The Effect of Carbon Nanotubes in Improving the Electromagnetic Behavior of W-type Hexaferrite Nanoparticles Doped With Mn and Ca Cations

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Dealing with the destructive effects of electromagnetic waves requires materials with the ability to lose magnetic and electrical energies. These materials are mainly composed of a magnetic material and an electrically conductive material. In the present research, at first, strontium ferrite nanoparticles doped with manganese and calcium with the formula of SrCo2-X(Mn Ca)X/2Fe16O27 (x=0.0-0.5) were synthesized by co-precipitation method. Then these nanoparticles were composited together with functionalized carbon nanotubes (with a volume ratio of 1 to 5%). X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and vector network analyzer were used to investigate the structural, magnetic, and microwave properties of the samples. The X-ray diffraction pattern results showed that the strontium ferrite phase was formed in all compounds, and there was no evidence of any impurities in the samples. FE-SEM results indicated that the particles completely covered the outer walls of the carbon nanotubes. Magnetometer test results also showed that with an increase in the amount of manganese and calcium cations in strontium ferrite, the saturation magnetization decreased and the coercive force increased. Reflection losses were also at least 30% higher in composite samples than those of in ferrite samples. The highest reflection loss (7.42 dB at a frequency of 1.12 GHz) was observed in the nanocomposite sample containing 5% by volume of carbon nanotubes. However, based on the results, the sample containing 4% by volume of carbon nanotubes had a wider absorption bandwidth compared to other samples.
Language:
Persian
Published:
Journal of Advanced Materials in Engineering, Volume:42 Issue: 2, 2023
Pages:
53 to 68
magiran.com/p2662288  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!