Feasibility Study of Energy Production from Small Archimedes Turbines on the Coast of Bandar Abbas and Calculation of Efficiency Optimization Parameters by Linear Programming
In this study, in addition to assessing the conditions in the coastal region of Bandar Abbas, the feasibility of utilizing Archimedes torsional turbines for renewable energy production in this area was investigated through a combination of field measurements and numerical simulations. Field studies included the measurement of environmental conditions, depth, and vessel traffic. The determination of a safe depth was based on these measurements. Additionally, the current patterns were assessed in the field, measuring key parameters like salinity, electrical conductivity, and density. To further develop the results, a numerical simulation was conducted using the ROMS numerical model to establish the hydrodynamic current patterns in the target area. Upon reviewing the outcomes with the SOLVER program and employing linear programming methods, effective constraints derived from field monitoring were created. The study explored the optimal energy efficiency of Archimedes torsional turbines under different inclinations relative to the seabed and angular velocities. The research and simulations revealed that varying the tilt of the vertical axis of the turbine within the range of 5 to 15 degrees significantly impacted the turbine's efficiency. The highest efficiency, at 75 %, was achieved at a 15-degree angle with a turbine rotation speed of 150 rpm. This result is particularly notable, considering the low slope of the studied area.
-
Numerical calculation of water evaporation rate of Hamun wetland using modeling installation of floating solar panel
*
Journal of Energy Planning And Policy Research, -
Investigation of the challenges of establishing mandatory standards of building energy consumption criteria Labaling in Iran
*
Advances in the Standards and Applied Sciences, Summer 2024