Adaptive Algorithm Based on Compressive Sensing to Improve the Channel Estimation of M-MIMO Systems

Article Type:
Research/Original Article (دارای رتبه معتبر)

To overcome the problem of channel estimation in massive multiple-input multiple-output (M-MIMO) systems, in this paper we propose a downlink link channel estimation scheme in frequency-division duplex (FDD) based on structured compressive sensing to reduce the pilot required by which Intrinsic spatial sparsity of M-MIMO delay channels are amplified. For this purpose, first, after discussing the different methods of channel estimation and examining the existing challenges, we define our roadmap and propose our algorithm, in which we estimate the channel based on the greedy orthogonal matching pursuit (OMP) algorithm. In this algorithm, spatial correlation between the channel impulse response of different transmitter antennas is used for accurate channel estimation. This algorithm obtains the channel sparsity in an adaptive way, which negates the ideal assumption of the previous works that the channel sparsity is in hand. In this case, this algorithm estimates the channel with good accuracy in cases when the exact amount of channel sparsity is not known. Finally, we present simulations that demonstrate the ability of this method to reduce the required pilot. The simulations show that the proposed channel estimation reliably obtains the channel sparsity level and the support set compared to similar methods.

Journal of Intelligent Procedures in Electrical Technology, Volume:16 Issue: 61, 2024
29 to 48  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!