Content-adaptive Gradient-based Error Concealment Scheme for H.264/AVC

Article Type:
Research/Original Article (دارای رتبه معتبر)

A challenging aspect of video error concealment (VEC) is reducing blockiness around the missing region. In this paper, we have devised a novel method for calculating the boundary matching distortion based on the edge direction surrounding the lost area to deal with this problem. After detecting the corresponding slice’s erroneous Macroblock (MB), it is divided into four 8×8 pixels sub-blocks. Then, the gradient of outer boundary pixels is derived and determines each side’s smoothness, which is further used for drawing the hypothetical line. Furthermore, this paper proposes a novel optimization-based model that can accurately measure boundary matching error for loss recovery. We observe better results for our proposed technique than other related VEC algorithms in terms of PSNR and SSIM. The proposed algorithm improves the average PSNR by 1.09 dB and increases the average SSIM by 0.0135 at the packet loss rate of 10%. In addition, for a PLR of 20%, the PSNR is increased by 1.28 dB, and the SSIM enhancement is 0.019. This algorithm is slightly more computationally complex than the compared methods, but it is still acceptable. Thus, by adding a few computations to the video decoder, the proposed method maintains the quality of the video, especially in the rough, damaged regions of a decoded frame.

Journal of Electrical Engineering, Volume:53 Issue: 4, 2023
299 to 308  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!