LSTM and XGBoost Models for 24-hour Ahead Forecast of PV Power from Direct Irradiation

Article Type:
Research/Original Article (دارای رتبه معتبر)
In this work, the photovoltaic power forecast for the next 24 hours by combining a time series forecasting model (LSTM) and a regression model (XGBoost) from direct irradiation only is performed. Several meteorological parameters such as irradiance, ambient temperature, wind speed, relative humidity, sun position, dew point were identified as influencing parameters of PV power variability. Thanks to the parameter extraction and selection techniques of the XGBoost model, only the direct irradiation could be kept as input parameters. The LSTM model was used to predict the direct irradiation for the next 24 hours and the XGBoost model to estimate the future power from the predicted irradiation. These models were developed under Python 3, the exploited data were downloaded in the PVGIS database for the city of Abomey-Calavi in Benin and the prediction was carried out on a panel of 1000W of peak power. An experimental validation was then performed by comparing the predicted irradiance values to the measured values on site. It was obtained for the LSTM model a root mean square error of 3.66 W/m2 and for the XGBoost model a root mean square error and a regression coefficient of 1.72 W and 0.992129 respectively. These results were compared to the LSTM-XGBoost performances with irradiation, temperature, sun position and wind speed as inputs. It was found that the use of irradiation alone as input did not as such impair the forecast performance. The proposed method was also found to be more efficient than LSTM and CNN models used alone.
Renewable Energy Research and Applications, Volume:5 Issue: 2, Summer-Autumn 2024
229 to 241  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!