Urban energy modeling to achieve regenerative cities (Case study: Tehran metropolis)

Author(s):
Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:
Introduction

As a result of the problem of pollution in the metropolitan areas and the amount of energy consumption, the effort to solve this problem is that it can be identified as the introduction of systems and models to replace the systems and the existing models of energy supply. In this research, quantitative modeling for energy in Tehran metropolis is considered according to environmental, economic and climatic goals.

Materials and methods

In this research to analyze the collected data from experimental and quantitative methods and analytical software GIS and Windographer have been used. To better process the solar radiant energy status, a series of radar images from the PALSAR sensor from the ALSO satellite were selected and processed and solar energy modeling was performed using the Area Solar Radiation model.

Results and discussion

Solar Energy: Due to the radar analysis process, Palsar radar images were obtained from the JAXA database. DEM radar images were used in ArcGIS software, in which the initial operation was performed. After converting the desired images into a single image, the image of the study area was extracted from the radar image. Finally, to create a better view of the study area, a map of the solar energy has been prepared. This map shows us in which areas of the region there is more possibility to use solar energy and in which areas this possibility is less. In the metropolis of Tehran, the northern half of the study area has more potential to use radiant energy.

Wind energy:

 In order to obtain a general of the situation in the region, wind energy potential in sample stations including: Chitgar, Firoozkooh, Geophysics, Imam Airport, Mehrabad Airport and Varamin has been calculated. Analysis of data related to wind energy in the region showed that the western and southern regions have the most potential for wind power generation capacity in the metropolis of Tehran.
Biomass energy (municipal waste): Today, biomass is recognized as one of the world's largest renewable energy sources. One of the types of biomass compounds is municipal waste. The amount of waste produced in Tehran is more than 7600 tons. The analysis of the obtained data showed that due to the huge volume of daily waste production in the metropolis of Tehran, with optimal modeling and proper planning, a good renewable energy source can be achieved for the region.

Conclusion

In relation to modeling, according to the obtained results, the model was created based on three groups of renewable energy, including solar energy, wind energy and biomass (municipal waste). To provide an integrated model for the Tehran metropolis, solar, wind, and biomass (municipal waste) data had to be analyzed on the same scale. Therefore, in order for the solar, wind and biomass energy data to have the same scale, first these data were evaluated using multi-criteria evaluation and then these values to have the same scales, the fuzzy membership function was used. Finally, the final output of the model will be in the form of a zoning map, in which there are three groups of energy (solar, wind and biomass).

Language:
Persian
Published:
Journal of Earth Science Researches, Volume:15 Issue: 55, 2024
Pages:
99 to 113
magiran.com/p2704010  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!