Application of Maximum Entropy Model and Remote Sensing Technique to predict susceptible areas to dust storms in Isfahan Province, Iran

Article Type:
Research/Original Article (دارای رتبه معتبر)

This study modeled sensitive areas to dust storms in Isfahan province, which is sensitive to successive droughts, and dust storms because of its climatic condition, and proximity to the desert, using meteorological codes related to dust, AOD values, and Maximum Entropy model (MaxEnt).

Materials & methods

200 occurrence points of dust were determined using dust meteorological codes and AOD values of MODIS sensor, Terra satellite, (2011-2022). Ten parameters including temperature, rainfall, albedo, altitude, slope, land use, enhanced vegetation index (EVI), normalized difference moisture index (NDMI), normalized difference salinity index (NDSI), and frequency percentage of erosive wind seed were considered dust-predictive factors. Finally, the MaxEnt model was utilized for modeling dust susceptibility. The performance of the model was specified using the AUC value and the importance of each influential factor was identified utilizing the Jackknife test.


  The findings indicated that areas susceptible to dust are mainly bare lands, salt lands, and poor rangeland located mostly in the north, northeast to parts of the east and southeast of the Province, and also the central parts towards the southwest of Isfahan Province. According to the results, the MaxEnt model, with AUC=0.72, had a good efficiency in modeling susceptible areas to dust storms in Isfahan Province.


The major conclusion of this study is that the MaxEnt model had good performance in mapping susceptible areas to dust in Isfahan Province. The results of this research can be useful for decision-makers in identifying the areas prone to dust storms.

25 to 37  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!