Investigating the effect of atmospheric nitrogen deposition on annual alfalfa roots and biochemical properties of Rangeland soil

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and objectives

Due to the increase in the consumption of fossil fuels and chemical fertilizers, especially nitrogen-containing fertilizers, the entry of nitrogen into the cycle of ecosystems has been more than normal.Nitrogen deposition as a consequence of increasing nitrogen input to the atmosphere, can be a threat to ecosystems. It can affect soil properties, soil microorganisms and their activities, vegetation and animals. The aim of the present study is to investigate the effects of deposition of different rates of atmospheric nitrogen on the biochemical properties of a summer rangeland's soil.

Methodology

For this purpose, the seeds of Medicago sativa were planted in 36 pots containing rangeland soil in a completely randomized block design.  Two months after seed germination in pots, six Nitrogen treatments included control,30, 60,90,120 and 150 kg ammonium nitrate/ha which dissolved in water were applied in 6 replications during a period of 75 days. At the end of experiment, some soil biochemical properties (acidity, electrical conductivity, absorbable phosphorus, total nitrogen, organic carbon and exchangeable potassium along with biomass and microbial respiration) and Root weight and depth factors were measured.  Data analysis was done using analysis of variance method and mean comparison was done using Duncan's test.

Results

The results demonstrated that increasing the level of ammonium nitrate deposition to 60 and 90 kg per hectare per year, despite the significant increase (p < 0.05) of organic carbon and total soil nitrogen, causes a significant decrease in other measured biochemical properties of the soil (p < 0.05). An increase in nitrogen deposition in the early stages may be partially responsible for root growth, but with nitrogen saturation in the soil and the occurrence of nitrate leaching, as well as the loss of soil fertility, unfavorable conditions for root growth are provided. With the increase of nitrogen deposition in the soil, up to the level of 60 kg /ha, the average respiration and microbial biomass increased, But at higher levels of  nitrogen deposition, respiration and microbial biomass decreased.

Conclusion

In case of an increase in mineral nitrogen deposition in the studied area, it is recommended to use the Medicago sativa in the improvement of vegetation restoration projects of summer rangelands to absorb the deposed mineral nitrogen in excess of the soil holding capacity, its alleviate negative consequences and creating a suitable root zone for the the  activity of soil microbial.

Language:
Persian
Published:
Iranian Journal of Range and Desert Research, Volume:30 Issue: 4, 2024
Pages:
542 to 556
magiran.com/p2706993  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!