Weed detection in fields using convolutional neural network based on deep learning

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

In many countries, on average, more than 50% of people's food comes from grains, and nearly 70% of the cultivated area of one billion hectares of the world is dedicated to grains. A variety of weeds grow along with cereals in the fields, which can reduce crop yield due to competition for light, water and nutrients. To eliminate weeds accurately and with minimal problems, timely detection with high accuracy and speed is required. be done.
In the field of agriculture, it is controlling and eliminating weeds in grain fields. Weeds are one of the most important factors affecting the production of agricultural products, which are their most important competitors in conventional agriculture, they spray the entire field to eliminate weeds, while weeds appear scattered and patchy in the field. which shows the necessity of using precise agriculture to solve this type of heterogeneity. In addition to causing economic damage, the conventional method of fighting can cause pollution of the environment and even the human food chain. Research shows that the losses caused by pests, diseases and weeds can reach 40% of the global crop every year and it is predicted that this percentage will increase significantly in the coming years. Besides, according to the research of Goktoan et al., the annual cost of weeds for The Australian economy is estimated to be around $4 billion as a loss in agricultural income.

Materials and Methods

Among the new methods in this field is the use of machine vision technology and related methods such as deep learning object detection algorithms and convolutional neural networks (CNN). The steps related to the implementation of the project include preparing data for training and evaluating networks, using new object detection algorithms, using different convolutional neural networks with different characteristics to extract image features in algorithms, and using the Feature Pyramid Network (FPN) method in object detection algorithms. Was. The output of the networks was evaluated in terms of the number of detections, the exact location of detection and the time of detection in the field. ViTs is based on the Transformer architecture that was originally developed for NLP tasks. Transformers use self-awareness mechanisms that allow the model to capture complex relationships between elements in a sequence. In the case of ViTs, sequence elements are image patches. In using the transformer architecture for visual data, it is dividing the image into small and non-interfering parts. Each patch typically consists of a grid of pixels. These patches are considered the "words" of the image sequence. Spatial embeddings are added to image patches to provide spatial information to the model. Spatial embeddings are necessary because transformers do not have built-in notions of order or spatial relationships. ViTs use multi-series self-awareness mechanisms to capture relationships between different image patches, and the representation of each patch is updated by attention to other patches. Data separation is very important in data watch transformers for two reasons a) the model needs data to learn and b) we need data to measure the model because the model may not be able to extract the information correctly.

Results and Discussion

The best network in terms of positioning accuracy was the transform model (ViTs) with an average accuracy of 0.95. In addition to this, the network considered in this research managed to recognize 503 of the 535 target weeds, and this means that our network is able to recognize 95% of these weeds. The presented method has been able to reach the highest accuracy compared to other existing methods and has been able to detect existing grasses in a much shorter period of time. Compared to other methods, the reset50 algorithm has been able to detect more than 88%, although its execution time is about 2.5 times that of the proposed method.
In comparing the efficiency of algorithms, execution time is as important as accuracy. By making comparisons and considering 70% of the data as training data and 30% as test data, the presented algorithm has been able to detect the weeds in the field with an accuracy of over 90% in just 13 seconds.

Conclusion

Today, deep learning methods are much more efficient than other methods, so we can use the new methods available in deep learning in the field of agriculture.

Language:
Persian
Published:
Journal of Agricultural Engineering, Volume:47 Issue: 1, 2024
Pages:
129 to 142
magiran.com/p2711325  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!