SLIT3 promotes cardiac fibrosis and differentiation of cardiac fibroblasts by RhoA/ROCK1 signaling pathway

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Objective (s)

Slit guidance ligand 3 (SLIT3) has been identified as a potential therapeutic regulator against fibroblast activity and fibrillary collagen production in an autocrine manner. However, this research aims to investigate the potential role of SLIT3 in cardiac fibrosis and fibroblast differentiation and its underlying mechanism.

Materials and Methods

C57BL/6 mice (male, 8-10 weeks, n=47) were subcutaneously infused with Ang II (2.0 mg/kg/day) for 4 weeks. One to two-day-old Sprague-Dawley (SD) rats were anesthetized by intraperitoneal injection of 1% pentobarbital sodium (60 mg/kg) and ketamine (50 mg/kg) and the cardiac fibroblast was isolated aseptically. The mRNA and protein expression were analyzed using RT-qPCR and Western blotting.

Results

The SLIT3 expression level was increased in Ang II-induced mice models and cardiac fibroblasts. SLIT3 significantly increased migrated cells and α-smooth muscle actin (α-SMA) expression in cardiac fibroblasts. Ang II-induced increases in mRNA expression of collagen I (COL1A1), and collagen III (COL3A1) was attenuated by SLIT3 inhibition. SLIT3 knockdown attenuated the Ang II-induced increase in mRNA expression of ACTA2 (α-SMA), Fibronectin, and CTGF. SLIT3 suppression potentially reduced DHE expression and decreased malondialdehyde (MDA) content, and the superoxide dismutase (SOD) and catalase (CAT) levels were significantly increased in cardiac fibroblasts. Additionally, SLIT3 inhibition markedly decreased RhoA and ROCK1 protein expression, whereas ROCK inhibitor Y-27632 (10 μM) markedly attenuated the migration of cardiac fibroblasts stimulated by Ang II and SLIT3.

Conclusion

The results speculate that SLIT3 could significantly regulate cardiac fibrosis and fibroblast differentiation via the RhoA/ROCK1 signaling pathway.

Language:
English
Published:
Iranian Journal of Basic Medical Sciences, Volume:27 Issue: 7, Jul 2024
Pages:
832 to 840
magiran.com/p2713848  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!