Improved Noise Reduction Method for Chaotic Time Series Using Neural Network and Singular Spectrum Analysis

Article Type:
Research/Original Article (دارای رتبه معتبر)

An improved method for noise reduction from a time series obtained from a chaotic system is presented. This improved method is based on a noise reduction technique presented by Schreiber and Grassberger that has good performance and less complexity compared to other noise reduction methods from chaotic data. Here a global model created using a neural network has been used as a prediction model for chaotic time series. This global prediction model performs better compared to the local prediction model used in the original method. The improved method also takes advantage of the singular spectrum analysis reconstruction technique. Both of these improvements led to a more accurate noise reduction method while preserving the unique properties of the original. The improved method is applied to a time series obtained from the chaotic state of Lorenz equations that is polluted with Gaussian noise. The final results show a 33 percent reduction in mean absolute error values compared to the original method. Also, the error of calculating the correlation dimension from the data has been reduced to 2 percent after applying the improved method.

Modares Mechanical Engineering, Volume:24 Issue: 1, 2024
53 to 63  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!