An efficient algorithm for computing the eigenvalues of conformable Sturm-Liouville problem
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In this paper, Computing the eigenvalues of the Conformable Sturm-Liouville Problem (CSLP) of order $2 \alpha$, $\frac{1}{2}<\alpha \leq 1$, and dirichlet boundary conditions is considered. For this aim, CSLP is discretized to obtain a matrix eigenvalue problem (MEP) using finite element method with fractional shape functions. Then by a method based on the asymptotic form of the eigenvalues, we correct the eigenvalues of MEP to obtain efficient approximations for the eigenvalues of CSLP. Finally, some numerical examples to show the efficiency of the proposed method are given. Numerical results show that for the $n$th eigenvalue, the correction technique reduces the error order from $O(n^4h^2)$ to $O(n^2h^2)$.
Keywords:
Language:
English
Published:
Computational Methods for Differential Equations, Volume:12 Issue: 3, Summer 2024
Pages:
471 to 483
https://www.magiran.com/p2727248
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت میکنیم در سایت ثبتنام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند.
راهنما
مقالات دیگری از این نویسنده (گان)
-
On Recovering Sturm--Liouville-Type Operator with Delay and Jump Conditions
*, Vladimir Vladicic
Sahand Communications in Mathematical Analysis, Autumn 2024 -
Subspace-recurrent C0-semigroups and their properties
Manooreh Moosapoor*,
Journal of Mathematical Researches,