Developing a Multidisciplinary Analyzing and Design Optimization Framework for Fixed Wing Micro Air Vehicles
There is no determined method for Micro Air Vehicles (MAVs) design (unlike full-scale aircraft), so MAVs design is very complex and vague. For this reason, the design of MAVs is very expensive (time-consuming), and finally, the obtained design could not be more optimal. To solve these challenges, this study developed a framework for Multidisciplinary Design Optimization (MDO) of fixed-wing MAVs. This framework aims to use the benefits of MDO (time reduction and achieving optimal design) in the design process of MAVs. So, it is tried to consider the most important modules for analysis, and the framework can consider all flight phases in the design optimization process. Geometry, weight, the center of gravity, aerodynamics, and power are the considered modules in this framework. The analysis of all modules is performed for the entire flight phase. To show the performance of this framework, the design optimization of a fixed-wing MAV has been done by considering take-off weight and drag as objective functions. The considered constraints for this research are from stability and geometry modules. It is worth noting that with attention to the complex design space of MAVs and the capability of the Genetic Algorithm (GA), this algorithm has been considered as an optimization algorithm in this study.