Evaluating the efficiency of SVM, LS-SVM and SVM-GOA models in simulating the Flood peak discharge at the Poldokhtar station

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In order to control and minimize the damaging impacts of floods, flood modeling or simulation is a fundamental solution. Identifying effective models for this purpose is crucial in watershed management. This study evaluates the accuracy of support vector machine models combined with the support vector machine (SVM), Grasshopper algorithm (SVM-GOA) and least square support vector machine (LS-SVM) in simulating the flood peak discharge of Poldokhtar station in the Karkheh basin. For this study, 74 flood events from 2009 to 2016 at the Poldokhtar station and data from 13 daily rainfall stations in the upstream area for the same period were utilized. Subsequently, 52 events were allocated for training, and 22 for validation. The comparison of results was conducted using three statistical indicators: Correlation coefficient (R2), Root mean square error (RMSE), Nash efficiency (Ns), and Standard error (SE). Additionally, uncertainty analysis was performed using two indexes: ARIL and POC. The results indicate the relative superiority of the LS-SVM model with SE=0.407, RMSE=110.16, NS= 0.91 and R2=0.92 compared to the SVM model with SE=0.5, RMSE=137.70, NS= 0.87 and R2=0.88 and SVM-GOA model with SE=0.519, RMSE=144.53, NS= 0.83  and R2=0.9. The study's overall conclusion is that the LS-SVM model is more accurate, faster, and easier to implement compared to the SVM and SVM-GOA models. As a result, it can be confidently preferred over the SVM and SVM-GOA models due to its significant advantages. The research emphasizes the critical importance of precise flood modeling and simulation in watershed management for mitigating the destructive impact of floods.
Language:
Persian
Published:
Iranian Journal of Soil and Water Research, Volume:55 Issue: 4, 2024
Pages:
537 to 552
https://www.magiran.com/p2746339