Difference of weighted composition operator from Cauchy transform space into Dirichlet space
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Let $H(\mathbb{D})$ be the space of all analytic functions on $\mathbb{D}$, $u,v\in H(\mathbb{D})$ and $\varphi,\psi$ be self-map $(\varphi,\psi:\mathbb{D}\rightarrow \mathbb{D})$. Difference of weighted composition operator is denoted by $uC_\varphi -vC_\psi$ and defined as follows \begin{align*} (uC_\varphi -vC_\psi)f(z) = u(z) f{(\varphi(z))}- v(z) f(\psi(z)) ,\quad f\in H(\mathbb{D} ), \quad z\in \mathbb{D}. \end{align*} In this paper, boundedness of difference of weighted composition operator from Cauchy transform into Dirichlet space will be considered and an equivalence condition for boundedness of such operator will be given. Then the norm of composition operator between the mentioned spaces will be studied and it will be shown that $\|C_\varphi\|\geq 1$ and there is no composition isometry from Cauchy transform into Dirichlet space.
Keywords:
Language:
Persian
Published:
Journal of Advances in Mathematical Modeling, Volume:14 Issue: 2, 2024
Pages:
87 to 95
https://www.magiran.com/p2780124
سامانه نویسندگان
از نویسنده(گان) این مقاله دعوت میکنیم در سایت ثبتنام کرده و این مقاله را به فهرست مقالات رزومه خود پیوست کنند.
راهنما
مقالات دیگری از این نویسنده (گان)
-
Norm of difference of general polynomial weighted differentiation composition operators from Cauchy transform spaces into derivative Hardy spaces
*, Ajay K. Sharma, Kamal Khalilpour
Journal of Mathematical Extension, Oct 2024 -
Weighted differentiation composition operators on the $Q_K(p,q)$ spaces and their essential norms
Mostafa Hassanlou *, , Ali Ebrahimi
Journal of Mahani Mathematical Research, Winter and Spring 2025