Classification of skin cancer images using two-level ensemble deep learning

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Today, despite the tremendous advances in medical science and technology, access to a specialist doctor is still considered a major challenge. This challenge is of great importance for diseases such as cancer. Skin cancer is the 13th most common cancer in men and the 15th most common cancer in women. While some skin problems are benign and harmless, some of them can be malignant masses, which will remain harmless if they are diagnosed in time. When consulting a specialist doctor may be time-consuming and expensive, an intelligent system can be a fast alternative or, at least, an efficient preliminary treatment solution. For skin cancer, such intelligent system may utilize the images of suspicious skin masses labeled according to their benign or malignant state by specialist physicians. These labeled images are useful for training intelligent systems which should diagnose the potential problems in unseen new images.In this research, a novel deep learning-based approach is proposed for the problem of classifying skin cancer images into two categories of benign and malignant images. In the proposed model, powerful deep learning models for image classification including VGG, ResNet, and Inception are used in two levels. Specifically, we formed two ensembles; VGG ensemble which consists of VGG-16 and VGG-19 models and ResNet ensemble which consists of ResNet152, ResNet50, and Inception models. CatBoost algorithm is used in each level to combine the models on that ensemble. Finally, at the next level, two ensembles were combined using the CatBoost algorithm. The proposed ensemble model tries to improve the accuracy and consistency of the results by aggregating the deep models at its two levels. In order to show the utility of the proposed model, a subset of ISIC public dataset for skin cancer images is used for training and evaluation of models. The performance of the proposed ensemble model is compared with several deep neural networks and previous similar researches. Specifically, we compared the results achieved by the proposed model with those obtained by existing similar deep models and those used as building blocks of the proposed model. The results show that the proposed model performs better in classifying skin cancer images. The performance of the proposed model, both in each of the classes and in general, has been better than all independent deep learning models. It has also been shown that using VGG ensemble along with this proposed model by combining its results with the help of CatBoost and forming a two-level ensemble has improved its independent performance in each class.

Language:
Persian
Published:
Signal and Data Processing, Volume:21 Issue: 2, 2024
Pages:
79 to 90
https://www.magiran.com/p2782445