A class of Gabor frames with bounded compactly supported generator function
In this paper a class of Gabor frames with time shift parameter $a>0$, frequency shift parameter $b>0$ and bounded compactly supported generator function $g$ such that $supp\ g\subseteq\left[\left(k+2\right)a-\frac{2}{b},ka+\frac{1}{b}\right]$ or $supp\ g\subseteq\left[\left(k+1\right)a-\frac{1}{b},ka+\frac{1}{b}\right]$, where $k$ is an integer number is introduced. In particular, a sufficient condition on a function $g\in C_c^+\left( \mathbb{R}\right) $ with $supp\ g\subseteq\left[\left(k+2\right)a-\frac{2}{b},ka+\frac{1}{b}\right]$ and positive decreasing derivative $g^\prime$ on $\left(ka-\frac{1}{b},\left( k+2\right)a \right)$, that make $\left\{E_{mb}T_{na}g\right\}_{m,n\in\mathbb{Z}}$ into a Gabor frame, is given.