Utilizing the conventional, object-oriented and pixel-based techniques to estimate erosion and sediment yield by MPSIAC model

Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:

Soil erosion and sediment yield in the downstream areas, water transfer canals, and dams are the most serious problems in the world today. Soil erosion threatens soil resources, causes severe damage to infrastructures, and imposes high costs on agriculture, watershed management, and natural resources. Reducing these hazards and damages due to soil erosion and sediment yield requires the use of quantitative data to identify critical areas that require immediate protection. Due to the high cost and time consuming of conventional methods, the use of new remote sensing technologies and satellite imagery is essential. This study used the MPSIAC model, one of the most well-known models for estimating soil erosion and sediment yield in Iran, geographical information system (GIS), and satellite image processing with object-oriented and pixel-based methods. For this purpose, basic data were prepared using base maps, Sentinel-2 satellite imagery, meteorological and hydrometric data, and fieldwork. After establishing a database, the score for each of the nine factors of the MPSIAC model was determined using the three common, object-oriented, and pixel-based processing methods. The extent of soil erosion and sediment yield of the watershed was determined within each hydrologic unit. Based on the results, the soil erosion and sediment yield intensities of the Lighvan watershed were classified as medium class (III). However, the comparison of the specific soil erosion and sediment yield values obtained from the three methods showed that the use of object-oriented methods in determining the values for land cover, land use, and current soil erosion state increased the accuracy of the predictions (with the estimated error of 12.18% and 13.15% for sediment yield and erosion, respectively) compared to common (with the estimated error of 15.73% and 16.71%) and pixel-based (with the estimated error of 18.78% and 19.45%) methods.

Language:
English
Published:
Journal of Dry land Soil Research, Volume:1 Issue: 1, Summer 2024
Pages:
113 to 124
https://www.magiran.com/p2815234  
سامانه نویسندگان
  • Panah Mohamadi
    Author (1)
    Mohamadi، Panah
  • Abbas Ahmadi
    Corresponding Author (2)
    Associate Professor Soil Physics and Conservation, Soil Science Engineering, Faculty of Agriculture, University Of Tabriz, Tabriz, Iran
    Ahmadi، Abbas
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)