The use of classification algorithms in wind erosion risk zoning in Isfahan province
Urban weathering refers to the processes of loosening, decay, and eventual deterioration of materials used in various urban constructions. This study focuses on assessing the degree of weathering in gravestones from the Joy-e-Horhor and Khold-e-Barin cemeteries in Yazd. A combination of petrographic analyses and longitudinal monitoring of Schmidt hammer rebound values for hundreds of gravestones was employed to achieve this. The findings indicate that in addition to the petrographic characteristics of the stones, such as mineralogical composition, mineral diversity, and rock texture and fabric, local climatic conditions significantly influence the weathering and degradation of these materials. Key processes contributing to the loss of stone durability include temperature fluctuations leading to thermal expansion and contraction, the albedo effect of the stone, wet-dry cycling, and the crystallization and dissolution of secondary minerals like calcite and gypsum. Gravestones made of travertine and marble, characterized by a predominance of calcite minerals and light-colored surfaces, exhibit higher resistance to weathering compared to other lithologies, provided they are not exposed to excessive moisture or frequent washing. In contrast, low-grade metamorphic rocks such as slate and phyllite are the least suitable for gravestones due to their high density of fractures and cleavage planes. Similarly, dark-colored igneous rocks are prone to rapid durability loss, as the differential thermal expansion and contraction of their constituent minerals in response to temperature changes accelerate their weathering processes.
-
Meteorological Drought Risk Monitoring and Zoning Using Random Forest Model
*
Journal of Drought and Climate change Research, Spring 2025 -
Evaluation and Analysis of Tourism Development with Emphasis on Rural Perspective (Case Study: Rural Areas of Kashan County)
*, Hamid Barghi
Journal of Tourism and hospitality marketing research, Winter and Spring 2025