Digital Mapping of Soil Penetration Resistance and Shear Strength using Machine Learning Algorithms in the Kilane Watershed, Kurdistan Province

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:

Mechanical properties of soil, such as shear strength and penetration resistance, play a crucial role in optimizing crop productivity and proper soil management. The objective of the research was to produce digital map of soil shear strength and penetration resistance in Kielaneh watershed, located in Kurdistan Province, covering an area of 12,000 hectares using Gradient Boosted Decision Trees (XGBoost), Random Forest (RF), and k-Nearest Neighbors (KNN). Soil penetration resistance and shear strength were measured using handheld penetrometers and vane shear devices at 150 observation points from the surface soil layer (0 to 10 centimeters). Spectral data and auxiliary variables derived from the Digital Elevation Model and Sentinel-2 satellite images were used to predict soil shear strength and penetration resistance. These variables include CHND, VD, RSP, CHNBL, Brightness, WE, NDVI, Band12, Greenness, PLC, as well as soil parameters such as organic matter, calcium carbonate, bulk density, geometric mean particle size, soil texture (percentages of clay, sand, silt), and visible near-infrared spectral data as latent variable (LT), representing soil formation factors. The results showed that the XGBoost had higher accuracy compared to other models for predicting shear strength in surface soil layer with an (R2) of 0.61 and an nRMSE of 0.16, as well as for predicting penetration resistance in the surface soil layer with an (R2) of 0.60 and an nRMSE of 0.11. In conclusion, the XGBoost model, using spectral data along with topographic variables and soil parameters, was able to estimate the spatial variability of soil mechanical properties with acceptable accuracy in the study area. The generated maps can be used to make necessary management decisions regarding of the region.

Language:
Persian
Published:
Journal of Range and Watershed Management, Volume:78 Issue: 1, 2025
Pages:
124 to 143
https://www.magiran.com/p2828535  
سامانه نویسندگان
  • Farrokhian Firouzi، Ahmad
    Corresponding Author (2)
    Farrokhian Firouzi, Ahmad
    Associate Professor Soil Science and Engineering, Shahid Chamram University, اهواز, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)