Numerical study of the non-linear time fractional Klein-Gordon equation using the Pseudo-spectral method

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
This paper presents a numerical scheme for solving the non-linear time fractional Klein-Gordon equation. To approximate spatial derivatives, we employ the pseudo-spectral method based on Lagrange polynomials at Chebyshev points, while using the finite difference method for time discretization. Our analysis demonstrates that this scheme is unconditionally stable, with a time convergence order of $\mathcal{O}({3 \alpha})$. Additionally, we provide numerical results in one, two, and three dimensions, highlighting the high accuracy of our approach. The significance of our proposed method lies in its ability to efficiently and accurately address the non-linear time fractional Klein-Gordon equation. Furthermore, our numerical outcomes validate the effectiveness of this scheme across different dimensions.
Language:
English
Published:
Computational Methods for Differential Equations, Volume:13 Issue: 2, Spring 2025
Pages:
479 to 493
https://www.magiran.com/p2840666  
سامانه نویسندگان
  • Ali Shokri
    Corresponding Author (2)
    Associate Professor Applied Mathematics, Mathematics, Faculty of Sciences, University of Zanjan, Zanjan, Iran
    Shokri، Ali
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)