AN EFFICIENT STOCHASTIC SEARCH WITH MINIMAL INITIAL POPULATION FOR STRUCTURAL OPTIMIZATION
Author(s):
Abstract:
Genetic Algorithms are best suited for unconstrained problems; however, most of thepractical cases have constraints. As a common approach, modifying initial population due toproblem-specific information has not yet come to an end. This is due to the generalizationchallenges and also the lack of diversity and effectiveness regarding relatively narrow sizeof the feasible subspace of the entire search space. In this article, a new type of expanding genetic population is presented starting from its minimal size. Suitable ideas from ant colony and simulated annealing approaches are utilized for an adaptive efficient search which is also tuneable by the developed extra control parameters. Effectiveness and efficiency of the proposed method are illustrated by capturing the global optimum in a number of well-known structural size and layout optimization examples in a considerably less fitness evaluations compared to the other standard methods.
Language:
English
Published:
Asian journal of civil engineering, Volume:11 Issue:6, 2010
Page:
741
magiran.com/p759550  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!