فهرست مطالب

International Journal of Civil Engineering
Volume:13 Issue: 3, Sep 2015

  • Transaction A: Civil Engineering
  • تاریخ انتشار: 1394/08/04
  • تعداد عناوین: 12
|
  • Numerical simulation of concrete fracture under compression by explicit discrete element method
    R. Abbasnia, M. Aslami Pages 245-254
    A new model is proposed for two-dimensional simulation of the concrete fracture in compression. The model generated by using the Voronoi diagram method and with considering random shape and distribution of full graded aggregates at the mesoscopic level. The aggregates modeled by combining irregular polygons, which then is placed into the concrete with no intersection between them. By this new modeling approach, the simulation of high-strength concretes with possible aggregates fracture is also feasible. After generation of the geometrical model, a coupled explicit discrete element method and a modified rigid body spring model have been used for solution. In this method, all the neighboring elements are connected by springs. The mortar springs have Elasto-plastic behavior and considering normal concrete, the aggregate springs behave only elastically without any fracture. The proposed model can accurately predict the mechanical behavior of concrete under compression for small and large deformations both descriptively and quantitatively.
    Keywords: Concrete fracture, Numerical simulation, Explicit discrete element method, Voronoi diagram, Mesoscale simulation
  • Evaluation of torsional stiffness in beam and slab bridge decks based on load testing
    I. Stimac Grandic, D. Grandic, A. Bjelanovic Pages 255-266
    In this paper, evaluation of torsional stiffness in beam and slab bridge deck elements is presented. A beam and slab bridge decks structurally behave as a grillage. A grillage has an efficient transverse load distribution due to transverse asymmetric load. In the case of bridge deck without transverse beams in the span, transverse load distribution depends on the torsional stiffness of longitudinal beams, transverse beams over the supports and deck slab. The results of load testing conducted on series of bridges in Croatia are compared with results obtained on different numerical grillage models in which torsional stiffness of main structural elements was varied. Five different numerical models for each tested bridge are used. To evaluate torsional stiffness of main structural elements of the bridge the transverse distribution coefficients are introduced. The design value of the coefficients of torsional stiffness reduction for verification of the serviceability limit state (SLS), with assumption of normal probability distribution is determined. The same coefficient is calculated using recommendation for torsional stiffness reduction in concrete elements defined by Model code CEB-FIB 1990 (MC 90). According to conducted analyses the design value of the coefficient of torsional stiffness reduction for verification of the serviceability limit state of main structural elements of beam and slab bridge deck is proposed.
    Keywords: Beam, slab bridge deck, Torsional stiffness, SLS
  • Advances in multi-scale simulation of hygro-thermo- mechanical deformation behavior of structural concrete
    D.P. Chen, C.W. Miao, J.P. Liu Tang Pages 267-277
    This paper presents theoretical and numerical state-of-the-art information in the field of hygro-thermo-mechanical deformation simulation in structural concrete. The aspects discussed include coupled hygro-thermo-mechanical performance of porous materials including concrete, multi-scale simulation of concrete properties especially the volumetric and structural deformation performance, and the multi-scale simulation of concrete under the coupling effect of multi-physics fields. The multi-scale simulation section includes the multi-scale simulation of composition and structure in concrete, the multi-scale simulation of concrete’s mechanical performance, and the multi-scale simulation of durability concerned performance of concrete. This paper presents an overview of the work, of which data from early 80 recent studies, carried out on the multiscale simulation of hygro-thermo-mechanical deformation performance of structural concrete. The relating previous studies and analysis showed that sufficient data have been obtained to give confidence in simulating hygro-thermo-mechanical performance of concrete based on the theory of heat and mass transfer in porous media, and the clear relationships have been obtained between moisture-heat transfer and hygro-thermal distribution at different scale. It is necessary to make further systematic multi-scale research on the relationship between micro-structure and property parameters of cement paste, threephase basic properties at meso level of concrete and the performance of concrete structures, which makes important practical significance to solve the crack of large-area and mass concrete structure and improve the durability of concrete structures.
    Keywords: Hygro, thermo, mechanical deformation, Multi, scale, Concrete, Numerical simulation, Porous media
  • Experimental study of typical and retrofitted jack arch slabs in a single story 3D steel building
    S.M. Zahrai Pages 278-288
    Seismic retrofit of masonry slabs in existing steel or masonry buildings has found special significance in current codes as failure of unstable jack arch slabs has been reported as a major reason for collapsing structures in Middle East deadly earthquakes. In this paper, three retrofit schemes are investigated and compared. The proposed rehabilitation techniques consist of a single X strapping, SXS, a double X strapping, DXS, and a two-way jack arch slab supported by a steel grid. Using experimental studies, advantages and disadvantages of each scheme are evaluated. In-plane stiffness and capacity of the diaphragm are adopted as the seismic performance index of each rehabilitation scheme. According to the obtained results, the jack arch slab systems designed and constructed based on proposed retrofit methods provide an appropriate alternative to other forms of flooring in seismic zones. DXS can greatly improve diaphragm performance in terms of in-plane stiffness, capacity and even energy dissipation of the diaphragm compared with the other two techniques. The second place belongs to SXS while the steel grid scheme has a minor effect on the in-plane stiffness of the diaphragm.
    Keywords: Jack arch masonry slab, Retrofitting methods, Seismic behavior, In, plane stiffness, Diaphragm, Cyclic testing
  • Seismic demands of steel buildings with perimeter and spatial moment resisting frames
    A. Reyes, Salazar, E. Bojorquez, J.L. Rivera, Salas, A. Lopez, Barraza, H.E. Rodriguez, Lozoya Pages 289-304
    The linear and nonlinear responses of steel buildings with perimeter moment resisting frames (PMRFs) are estimated and compared to those of equivalent buildings with spatial moment resisting frames (SMRFs). The equivalent models with SMRFs are designed by using an approximated procedure in such a way that, not only their fundamental period, total mass and lateral stiffness are fairly the same as those of the corresponding buildings with PMRFs, but also other characteristics to make the two structural "as equivalent" as possible. The numerical study indicates that the interstory shears of the PMRFs building may be significantly larger than those of the SMRFs building. The main reasons for this are that the buildings with PMRFs are stiffer and that the dynamics properties of the two types of structural systems are different. The interstory displacements are similar for both structural systems in many cases. For some other cases, however, they are larger for the model with SMRFs, depending upon the closeness between the earthquake corner periods and the periods of the buildings. The global ductility and story ductility demands are larger for the buildings with PMRFs, implying that, since larger ductility demands are imposed, the detailing of the connections will have to be more stringent than for the buildings with SMRFs. It can be concluded, that the seismic performance of the steel buildings with SMRFs may be superior to that of steel buildings with PMRFs. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.
    Keywords: Steel buildings, Spatial, perimeter moment resisting frames, Inelastic behavior, Seismic loading
  • Sustainable groundwater - a need of sustainable agriculture
    D. Khan, N. Ejaz, T.A. Khan, T.U. Saeed, H. Attaullah Pages 305-320
    Globally, irrigated agriculture is the largest extractor and the most frequent consumer of groundwater resources, with important groundwater-dependent and largely spread agro-economies. Quality of irrigation water is one of the key factors which have either direct or indirect impact on plant growth, soil and water management practices and plant yields. This work aims at highlighting the importance of periodic assessment of groundwater quality for irrigation, impact of different chemical parameters on plant yield and agriculture and water management practices needed in adverse irrigation water conditions. This study was conducted in semi-arid area where salinity and alkalinity are considered the main threats to the sustainable irrigation agriculture. Thirty representative samples were collected for chemical analyses from various sources of groundwater, within an area of 36 km2, lying in the north-east of the Lakki Marwat district Pakistan. The standard values suggested by WAPDA, FAO and USDA Handbook 60 were used as benchmark for comparison. The electrical conductivity and pH values together classify groundwater as saline-alkaline. It is revealed that none of the water samples has an adverse impact on the yield of barley, sorghum and wheat while 7% and 17% of this water respectively reduce the yield of corn and onion by 50%. Besides, 7% of this water reduces the yield of alfalfa by 25%. This work recommends management practices such as deep ploughing, provision of adequate drainage and crop rotation for improving the use of such water.
    Keywords: Groundwater, Lakki marwat, WAPDA, Salinity, Sodicity, Irrigation
  • An approximation method for design applications related to sway in RC framed buildings
    H. Tekeli, E. Atimtay, M. Turkmen Pages 321-330
    In this paper, an approximate method is proposed for determining sway of multistory RC buildings subjected to various types of lateral loads. The calculation of both fundamental period and stability index in RC building requires the sway term at each story level. Using approximate method design engineers can estimate sway terms at each story level. The developed analytical expressions are inserted into fundamental period and stability index equations to replace the sway terms, which yields modified equations for fundamental period and stability index without any sway terms. It is fairly easier to employ these equations developed by eliminating all sway terms. Results obtained from the equations are remarkably close to those generated by the related computer program. Consequently, design engineers can reliably use the simple equations to calculate stability index and fundamental period, which enables the determination of these parameters without referring to the complex sway terms. The capability and accuracy of the proposed equations are demonstrated by a numerical example in which computer program results are compared with the proposed methodology.
    Keywords: Analytical methods, Sway, Framed buildings, Fundamental period, Stability index
  • Statistical model to predict the mechanical properties of binary and ternary blended concrete using regression analysis
    A.R. Hariharan, A.S. Santhi, G. Mohan Ganesh Pages 331-340
    This research paper presents the use of wasteful supplementary cementitious materials like fly ash and silica fume to conserve the cement used in concrete. The cement industry is one of the major producers of greenhouse gases and an energy user. In this study, Portland cement was used as a basic cementitious material. Fly ash and silica fume were used as the cement replacements by weight. The replacement levels of fly ash were 30%, 40% and 50%, and silica fume were 6% and 10%. The water binder ratio was kept constant as 0.4 and super plasticizer was added based on the required workability. Results of the binary and ternary concrete mixtures compressive strength, split tensile strength and flexural tensile strength were taken for studyup to 90 days. Based on the experimental results of compressive strength, prediction models were developed using regression analysis and coefficients were proposed to find the split tensile strength and flexural strength of binary-ternary concrete mixtures at 28 and 90 days.
    Keywords: Compressive strength, Split tensile strength, Flexural strength, Fly ash, Silica fume, Industrial waste
  • Energy dissipation over large-scale roughness for both transition and uniform flow conditions
    S. Pagliara, T. Roshni, M. Palermo Pages 341-346
    Rock chutes are natural river training structures and are efficient energy dissipaters too. From the hydraulic and environmental point of view, rock chutes have become important structures in the natural river morphology. A physical study was conducted and flow properties were measured over rough bed materials of a rock chute, which was assembled at the PITLAB center of the University of Pisa, Italy. Experiments were performed for slopes varying between 0.18≤ S ≤0.38, 0.03 < dc/H < 0.54 and for ramp lengths Lr between 1.17 m ≤Lr≤3.6 m. This paper presents the energy dissipation characteristics of the two-phase flows in the presence of two different base materials. In addition, the dissipative process was also analyzed in the presence of reinforcing boulders located on the base material. The findings showed that energy dissipation rate slightly increases with the boulder concentrations for the tested slopes and materials. The experiments were conducted for different rock chute lengths in order to understand its effect on the energy dissipation. An empirical expression is developed for determining the energy dissipation characteristics over different base materials in different ramp length conditions in twophase flows. Results have been compared with the results obtained for stepped chutes and found a similar decreasing trend of dissipation rate for dc/Lr ≤0.1.
    Keywords: Energy dissipation, Rock chute, Boulders, Two, phase flows
  • A dynamic model for the interaction of the cable bridge and train system
    M.M. Jalili, A.H. Orafa Pages 347-361
    The vibration of cable-stayed bridges subjected to the passage of high-speed trains is studied in this article. The moving train includes a number of wagons, each of which is modeled as a four-axle system possessing 48 degrees of freedom. The car model is nonlinear and three-dimensional and includes nonlinear springs and dampers of primary and secondary suspensions, dry friction between different parts and also clearances and mechanical stops. Two parallel rails of the track are modeled as Euler-Bernoulli beams on elastic points as rail pads. The rail irregularities are assumed to be stationary random and ergodic processes in space, with Gaussian amplitude probability densities and zero mean values. The bridge deck is modeled as a plate supported by some cables. The current model is validated using several numerical models reported in the literature of the earlier researcher.
    Keywords: Rail vehicle dynamics, Euler, Bernoulli beam, Levy method, Random rail irregularities
  • A review of customer relationship (CRM) implications: benefits and challenges in construction organizations
    Ch. Preece, H.Y. Chong, H. Golizadeh, J. Rogers Pages 362-371
    The management philosophy, namely, Customer relationship management (CRM) has been widely accepted and successfully applied across a range of sectors. However, there has been very little research efforts in the field of CRM in the construction industry. This paper provides a review of the CRM philosophy and technology, and considers the implications benefits and challenges to construction organizations at a strategic business and operational level. Given the generally unstable economic and highly competitive marketplace, implementation of CRM throughout the lifecycle of assets may provide for more effective management of existing and prospective clients. The CRM approach would seem to be compatible with general trends in the construction industry towards more collaborative working and the paper provides that both the philosophy and technologies can be integrated with current initiatives such as building information modeling (BIM). Construction clients in the public and private sector are diverse in nature, complex in their buying processes and at varying levels of knowledge of the Industry. In addition to seeking value for money from their projects and assets, they have become more concerned about sustainability and environmental impact. It has been recognized that management of a broader range of business and project level stakeholders is necessary.
    Keywords: Client, Relationship, Management, BIM, Construction
  • Skidders Traffic Assessment on Forest Soil Properties
    S.A.O. Hosseini, M. Nasiri, M. Akbarimehr Pages 372-377
    Harvesting of timber using ground based machinery is still a common practice around the world. Track and road building, and movement of machinery during harvesting operations cause soil disturbance. Therefore the aim of this study was to investigate the change in soil properties after logging operation on skid trails (2 years and 7 years after logging) and compare disturbed soil properties with control sampling (undisturbed soil). For this purpose, soil samples were collected from the skid trail and undisturbed area. Electrical conductivity, pH, organic carbon, moisture equivalent, moisture, total porosity and bulk density were determined on the skid trail and undisturbed area. Soil characteristics were examined in two ages (2 years and 7 years skid trail). There were crucial differences in the values of electrical conductivity, organic carbon, moisture, total porosity and bulk density from skid trail and undisturbed area in 2 years skid trail (p<0.05). But on 7 years skid trail, there were no significant differences in values of mentioned factors from skid trail and undisturbed area (p>0.05) except bulk density (p=0). It has been concluded that 7 years after logging, all soil properties except bulk density were completely recovered on skid trail. These findings have important implications for assessing the impact of skidders traffic and recovery time in skid trails.
    Keywords: Skidders traffic, Skid trail, Soil recovery, Soil properties