فهرست مطالب

علوم و مهندسی زلزله - سال پنجم شماره 2 (پیاپی 15، تابستان 1397)

مجله علوم و مهندسی زلزله
سال پنجم شماره 2 (پیاپی 15، تابستان 1397)

  • تاریخ انتشار: 1397/05/19
  • تعداد عناوین: 10
|
  • مهدی ماهری پیرو، احمد میرهاشمی، مجید عباسی، عبدالرضا قدس * صفحات 1-14

    در این مطالعه با استفاده از 48016 بیشینه دامنه ی رکوردهای مصنوعی لرزه نگاشت وود- اندرسون استخراج شده از شکل موج های مربوط به 2650 زلزله ی ثبت شده توسط لرزه نگاشت های مرکز لرزه نگاری کشوری وابسته به موسسه ژئوفیزیک دانشگاه تهران، پژوهشگاه بین المللی زلزله شناسی مهندسی زلزله و شبکه های موقت دانشگاه تحصیلات تکمیلی علوم پایه زنجان، رابطه کاهندگی برای بزرگای محلی برای کل ایران به صورت زیر محاسبه شده است:که در این رابطه فاصله کانونی بر حسب کیلومتر و بیشینه دامنه جابه جایی موج برشی برحسب میلی متر است. داده های استفاده شده برای محاسبه رابطه بالا مربوط به زلزله های با فواصل کانونی 10 الی 800 کیلومتری است و در نتیجه رابطه محاسبه شده برای فواصل کانونی مساوی و کمتر از 800 کیلومتر معتبر است. در رابطه کاهندگی محاسبه شده، پارامتر پخش هندسی بیشتر از مقدار ارائه شده توسط رابطه هاتون و بور [1] است که پخش فوق کروی جبهه موج در فواصل نزدیک را نشان می دهد. در صورت عدم استفاده از داده های با فاصله کانونی کمتر از 60 کیلومتر، پارامتر پخش هندسی به مقادیر پخش کروی نزدیک می شود. مقادیر تصحیح ایستگاهی در محدوده ی 44/0- و 32/0 است. به طورکلی، برای بیشتر ایستگاه های واقع در زاگرس، البرز و شمال غرب ایران مقادیر تصحیح ایستگاهی منفی محاسبه شده است که نشان دهنده ی تقویت دامنه امواج برشی و برای بیشتر ایستگاه های ایران مرکزی و شمال شرق ایران تصحیح ایستگاهی مثبت به دست آمده است. رابطه ی کاهندگی به دست آمده برای ایران به طور قابل توجهی در فواصل نزدیک کانونی بزرگای متفاوتی از روابط مورد استفاده در مراکز زلزله نگاری ایران می دهد. با توجه به گسترش شبکه های لرزه نگاری ایران و افزایش ثبت زلزله ها در فواصل نزدیک کانونی، پیشنهاد می شود از رابطه ی محاسبه شده در این مطالعه برای تخمین بزرگای محلی در ایران استفاده شود.

    کلیدواژگان: بزرگای محلی، منحنی کاهندگی، تصحیح ایستگاهی، فلات ایران، زاگرس
  • محمد مجد پزشکی، حمید علی الهی* صفحات 15-33

    در این تحقیق، رفتار غیرخطی عوارض توپوگرافی تپه ای شکل در برابر هجوم امواج برشی SV با استفاده از برنامه اجزای محدود آباکوس1 و در قالب مطالعات پارامتریک مورد مطالعه قرار گرفته است. مدل رفتاری استفاده شده در مدل سازی عددی بر اساس مدل غیرخطی سخت شونده کینماتیک با ضابطه گسیختگی وون- مایسز2 می باشد. در این راستا، ابتدا تپه ذوزنقه ای شکل3 با چهار ضریب شکل (SR) برابر 1/0، 3/0، 5/0، 7/0 و با زاویه شیب 45 درجه، مبنای مطالعات پارامتریک مد نظر قرار گرفته شده است. سپس جهت بررسی تاثیر شکل توپوگرافی تپه، علاوه بر تپه ذوزنقه ای، تپه ها با شکل های نیم سینوسی4 و نیم بیضی5 و با چهار ضریب شکل یاد شده نیز مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می دهند که رفتار غیرخطی خاک منجر به برآوردهای کمتر بزرگ نمایی امواج نسبت به رفتار خطی شده است. حداکثر مقادیر بزرگ نمایی تپه ها در ضرایب شکل مختلف در دو رفتار خطی و غیرخطی در تاج تپه ها ظاهر می شوند. همچنین مقادیر بزرگ نمایی غیرخطی در تپه های ذوزنقه ای با ضریب شکل 7/0 در فرکانس های پایین با اختلافی در حدود 15 درصد نسبت به مدل خطی، کاهش می یابند. با فاصله گرفتن از اطراف تپه به طرفین، پاسخ ها به سمت میدان آزاد بدون حضور عارضه تپه تمایل می یابند. همچنین در این تحقیق مقادیر PGA در عمق و نسبت امپدانس مصالح داخل تپه به بسترطبیعی مورد بررسی قرار گرفته است.

    کلیدواژگان: رفتار غیرخطی، توپوگرافی تپه، بزرگ نمایی، روش عددی، امواج مهاجم
  • مهزاد اسمعیلی فلک، هوشنگ کاتبی * صفحات 35-49

    روش انجماد مصنوعی زمین به عنوان یک روش بدیع مطرح می گردد که نه تنها از لحاظ فنی و اقتصادی قابل قبول است بلکه دوست دار محیط زیست بوده و در تمامی انواع خاک ها و شرایط آب زیرزمینی قابل استفاده است. هدف از این مطالعه، تحلیل و طراحی مکانیکی دیوار خاک منجمد تحت تاثیر کاهش دما و عبور بار ترافیکی می باشد. در این مطالعه با استفاده از مدل رفتاری موهر- کولمب اصلاح شده که با بهره گیری از نتایج آزمون های آزمایشگاهی بر روی خاک منجمد، صحت سنجی شده است، به شبیه سازی سه بعدی اجزای محدود دیوار خاکی منجمد و بررسی پارامتری آن توسط نرم افزار آباکوس پرداخته شده است. لازم به ذکر است که این پژوهش در قالب یک مطالعه موردی صورت گرفته و تمامی نمونه های آزمایشگاهی از گمانه های مطالعاتی خط 2 قطار شهری تبریز به دست آمده اند. مطابق نتایج آزمایش ها، رفتار نرم شونده در تمامی نمونه های خاک منجمد به وضوح مشاهده می شود و نمودارهای تنش-کرنش یک قله (Peak) و یک حالت پس ماند (Residual) از خود نشان می دهند. نتایج آزمایش سه محوری بر روی خاک منجمد نشان می دهند که با کاهش دما مقاومت برشی خاک ماسه ای بددانه بندی شده منجمد به طور قابل ملاحظه ای افزایش می یابد. نتایج تحلیل های عددی نشان می دهند که تغییرمکان جانبی دیوار خاک منجمد تحت تاثیر گودبرداری به سمت داخل گود در مقطع وسط دیوار بیشتر از مقطع تکیه گاه دیوار بوده و تاثیر عبور بار ترافیکی بر روی مقطع وسط دیوار و افزایش تغییرمکان جانبی آن بیشتر از مقطع تکیه گاه دیوار می باشد. همچنین قابل ملاحظه است که کاهش دما از تا تاثیر قابل ملاحظه ای بر کاهش تغییرمکان جانبی دیوار خاک منجمد در مقطع تکیه گاه ندارد (حدود 2 تا 3 %) ، در حالی که در مقطع وسط دیوار کاهش دما در محدود مذکور تا حدود 13% منجر به کاهش تغییرمکان جانبی دیوار خاک منجمد به سمت گود می گردد.

    کلیدواژگان: انجماد مصنوعی خاک، روش اجزای محدود، آزمایش فشار سه محوری، بار ترافیکی، متروی تبریز
  • مهتاب شیروی، محسن احمدنژاد، سید مجتبی موسوی* صفحات 51-60

    خرابی های به جامانده از زلزله های سال 1999 ترکیه و تایوان علاقه مندی به بررسی رفتار ساختمان ها در برخورد با گسیختگی سطحی ناشی از گسل ها را بیشتر نمود. در این خصوص تحقیقات زیادی برای پی بردن به وضعیت اندرکنش موجود بین گسیختگی گسل و پی های سطحی انجام شد؛ هم اکنون در ایران و بسیاری از کشورهای دنیا ساختمان های ساخته شده و یا در حال ساختی هستند که احتمال برخورد گسیختگی ناشی از گسل ها با آنها با توجه به وجود عدم قطعیت ها در رخنمون محل دقیق گسلش سطحی وجود دارد. از این رو با بررسی هر چه بیشتر خطرات ناشی از گسلش در اندرکنش با پی های سطحی می توان به ساخت وساز بر روی یا مجاور گسل ها کمک نمود و ابهامات موجود در این زمینه را تا حد زیادی مرتفع نمود. در تحقیق حاضر با توجه به محدودیت هایی که آیین نامه های لرزه ای جهت ساخت وساز در پهنه های گسلی در نظر گرفته اند و ارزیابی شواهد میدانی موجود از زلزله های گذشته به بررسی عددی مخاطرات گسلش سطحی معکوس بر ساختمان ها پرداخته می شود. با توجه به شواهد میدانی برداشت شده در زلزله های گذشته، موقعیت قرارگیری ساختمان ها و بار سازه از نقش ویژه ای در ایجاد خسارت در سازه ها هنگام وقوع گسلش سطحی برخوردار است که در تحقیق حاضر، مورد بررسی قرار گرفته است. نتایج مطالعات حاضر نشان می دهد که محدودیت های آیین نامه ای از قبیل فاصله مجاز جهت ساخت و ساز در پهنه های گسلی فعال، الزاما منجر به حصول ساخت و سازی ایمن نمی گردد.

    کلیدواژگان: مدلسازی عددی، گسلش سطحی معکوس، پی
  • سید یونس جباری، محسن بزرگ نسب، رضا تقی پور * صفحات 61-72

    در این مقاله به بررسی اثر نوع پالس سرعت رکوردهای زمین لرزه های حوزه نزدیک گسل و پارامترهای تاثیرگذار آنها بر پاسخ سازه پرداخته شده است. بدین منظور، سد دو قوسی ماروپوینت در نرم افزار سالیدورکس مدل سازی گردیده و در نرم افزار آباکوس و با در نظر گرفتن اندرکنش سد- مخزن- فونداسیون و رفتار غیرخطی بتن مورد تحلیل غیرخطی قرار گرفت. در این تحقیق، پالس های موجود در رکوردهای حوزه نزدیک به دو نوع B و C تقسیم شده اند. جهت بررسی اثرات نوع پالس های رکوردهای حوزه نزدیک، رکوردهای مورد بررسی به دو گروه با بیشینه شتاب مقیاس شده یکسان و انرژی نسبتا یکسان طبقه بندی گردیدند. در گروه اول که بیشینه شتاب زمین، شدت آریاس و بیشینه جابه جایی یکسان بوده است، نتایج حاصله حاکی از پاسخ بیشتر رکوردهای پالس گونه نوع C می باشد. در گروه دوم نیز، بررسی ها نشانگر مخرب تر بودن رکوردهای پالس گونه از نوع C در حالت کلی است. بررسی های بیشتر همچنین نشانگر تاثیرگذاری نسبتا زیاد دو پارامتر «شدت آریاس» و «مدت اثر پالس» در میزان پاسخ حاصله از رکوردها در حالت یکسان بودن انرژی رکوردهاست. همچنین در حالت یکسان بودن نسبی پارامترهای فوق، سایر پارامترها نظیر بیشینه جابه جایی و… تاثیرگذار نشان داده اند.

    کلیدواژگان: سد بتنی قوسی، تکانه های حوزه نزدیک گسل، رکوردهای پالس گونه، انرژی زلزله، شدت آریاس، مدت اثر پالس
  • محمد خوش نام، علی خیرالدین، محمد ایمان خداکرمی * صفحات 73-89

    با توجه به عدم وجود روابط و ضوابطی مشخص در مورد سازه های فولادی دارای قاب خمشی و مهاربند همراه با سیستم باربر ناموازی در آیین نامه های ایران، لزوم بررسی رفتار این گونه سازه ها مورد توجه محققین قرار گرفته است. در این مقاله با مدل سازی سه بعدی سازه های فولادی با شش نوع پلان که هرکدام بیانگر مقداری از ناموازی بودن سیستم باربر هستند در مجموع 18 مدل آماده شده، سازه ها تحت دو نوع بارگذاری دینامیکی خطی و بار افزون مورد بررسی و مطالعه قرار گرفتند. نتایج حاکی از آن است که با افزایش ناموازی بودن سیستم باربر، پیچش سازه ها نیز افزایش می یابد. این افزایش برای سازه های کوتاه مرتبه تا 18 برابر و برای سازه های میان مرتبه تا پنج برابر بیشتر از سازه های موازی است. اعمال بارگذاری در امتداد سیستم باربر ناموازی نتایج غیر قابل انتظاری را موجب می شود. افزایش ارتفاع سازه باعث کاهش پیچش در دیافراگم می شود. بیشترین پیچش دیافراگم مربوط به طبقه ای است که در ارتفاع 60 الی 70 درصد از تراز پایه ساختمان قرار دارد. در بارگذاری هایی که در راستای عمود بر سیستم باربر ناموازی صورت می گیرد، پیچش دیافراگم ها در حالت الاستیک و غیر الاستیک تفاوت چندانی با یکدیگر ندارند، درصورتی که با بارگذاری در جهت دیگر این تغییرات برای حالت غیر الاستیک گاهی تا بیش از 50 برابر حالت الاستیک است.

    کلیدواژگان: سیستم باربر ناموازی، قاب خمشی فولادی، مهاربند همگرا، پیچش دیافراگم، تحلیل دینامیکی خطی، تحلیل بار افزون
  • رضا میلانچیان، محمود حسینی *، مسعود نکویی صفحات 91-104

    در این پژوهش، جداسازی لرزه ای قائم یک ساختمان به دو زیرسازه با مشخصات دینامیکی متفاوت با هدف کاهش پاسخ لرزه ای مورد مطالعه قرار گرفته است. برای این منظور یک قاب برشی با میراگر ویسکوز و ویسکوالاستیک به دو زیرسازه تفکیک شده و پاسخ لرزه ای سازه اصلی و سازه های جداسازی شده قائم (س. ج. ق.) برای تعداد قابل توجهی از نسبت های جرم و سختی زیرسازه ها نسبت به سازه اصلی، تحت تحریک زلزله هایی با پریود غالب کمتر از نیم ثانیه و بیشتر از نیم ثانیه محاسبه شده است. در این مطالعه دستگاه مختصات جداسازی و نمودارهای کانتوری معرفی شده که نحوه پاسخ لرزه ای س. ج. ق. را بیان می کند و بر اساس آن سه حالت جداسازی جرمی، اندرکنشی و کنترل جرمی از هم تمیز داده شده است. همچنین اثر متقابل نسبت های جداسازی و مشخصات میراگرهای ارتباطی شامل سختی و میرایی، بر کنترل پاسخ س. ج. ق. مورد بررسی قرار گرفته و محدوده های مناسبی از مشخصات میراگرها و همچنین محدوده های بهینه از نسبت های جداسازی پیشنهاد شده است. در انتها تاثیر جداسازی در یک ساختمان برشی 5 طبقه مطالعه شده است. نتایج دلالت بر آن دارد که با به کارگیری جداسازی قائم، کاهش پاسخ لرزه ای تا 40 درصد در زیرسازه نرم و حتی بیشتر از آن در زیرسازه سخت قابل دستیابی است.

    کلیدواژگان: جداسازی لرزه ای قائم، میراگرهای ویسکوز و ویسکوالاستیک، کاهش پاسخ لرزه ای، روش عددی رونگه-کوتا، میرایی نامتناسب
  • محسن گرامی، امیرحسام مشایخی، نوید سیاه پلو * صفحات 105-117

    زلزله های حوزه نزدیک گسل که حاوی اثرات جهت پذیری پیش رونده1 هستند به دلیل وجود پالس در رکورد سرعت، باعث ایجاد نیازهای قابل توجهی بر قاب های فولادی، در مقایسه با زلزله های معمولی می شوند. بنابراین بررسی رفتار قاب های فولادی و همچنین اثرات مودهای بالاتر تحت زلزله های حوزه نزدیک گسل ضروری است. به همین منظور تعداد پنج قاب خمشی فولادی با شکل پذیری متوسط و تعداد 4، 7، 10، 15 و 20 طبقه، تحت 20 شتاب نگاشت دور و نزدیک گسل با اثرات جهت پذیری پیش رونده، مورد بررسی قرار گرفته است. در نهایت با بررسی پاسخ های ارتجاعی سازه تک درجه آزاد (SDOF) تحت شتاب نگاشت های مورد بررسی، ضرایب تبدیل پاسخ سازه SDOF به MDOF ارائه شده است. نتایج این تحقیق نشان می دهد که اثرات مودهای بالاتر تحت زلزله های دور از گسل در مقایسه با زلزله های نزدیک گسل بیشتر است. همچنین در حدود 30 تا 50 درصد از ارتفاع سازه در طبقات فوقانی، زاویه دریفت حاصل از زلزله های نزدیک گسل با اثر جهت پذیری پیش رونده، بیشتر از زلزله های دور از گسل است.

    کلیدواژگان: اثرات مودهای بالاتر، نزدیک گسل، جهت پذیری پیش رونده، سازه یک درجه آزاد، تحلیل تاریخچه زمانی غیرخطی
  • کاوه فرجی نجارکلایی، مجید محمدی *، نادر فنایی صفحات 119-132

    هدف اصلی این مطالعه بررسی تاثیر بار قائم بر رفتار جانبی قاب میان پر1 فولادی با مصالح بنایی به هنگام زلزله است. در این راستا یک مطالعه آزمایشگاهی که شامل دو نمونه قاب فولادی میان پر با مصالح بنایی تحت اثر بار جانبی و قائم می باشد، برای بررسی انتخاب شده است. نمونه اول تحت اثر بار جانبی و نمونه دوم تحت اثر بار جانبی و بار قائم قرار گرفته است. مدل اجزای محدود این دو نمونه آزمایشگاهی ساخته شده و بر اساس نتایج آزمایشگاهی صحت سنجی شده اند. سپس مدل صحت سنجی شده برای انجام مطالعه پارامتریک استفاده شده است. نتایج نشان دهنده ی آن است که حدودا بیشتر از 60 درصد بار وارده بر میان قاب به دیوار می رسد و بقیه آن توسط تیر بالایی به ستون ها منتقل می گردد. بر اساس نتایج، مقاومت جانبی نهایی و سختی قاب میان پر با افزایش بار قائم بر میان قاب تا 200 کیلونیوتن (که 128 کیلونیوتن آن معادل 7/6 درصد مقاومت فشاری آجرکاری به دیوار بنایی می رسد) به ترتیب 15 و 50 درصد افزایش پیدا می کنند. اما مقاومت جانبی بعد از افزایش بار قائم از 7/6 درصد به 2/10 درصد مقاومت فشاری آجرکاری کاهش می یابد. سختی نیز بعد از رسیدن بار قائم از 2/10 درصد به 7/13 درصد مقاومت فشاری آجرکاری تغییر چندانی پیدا نمی کند. می توان گفت که بار قائم تا مقدار مشخصی باعث افزایش سختی و مقاومت جانبی میان قاب خواهد شد و بعد از آن مقدار سختی تقریبا ثابت باقی می ماند و مقاومت جانبی نهایی کاهش پیدا می کند.

    کلیدواژگان: میان قاب بنایی، قاب فولادی، بارگذاری قائم، بارگذاری جانبی، مدل سازی اجزاء محدود
  • مصطفی شهریاری، مرتضی بسطامی * صفحات 133-150

    عملکرد جوامع در چگونگی بازگشت به شرایط تعادل مهم‏ترین بخش در وقوع یک رخداد است که یکی از شرایط اساسی جوامع پایدار می‏باشد. در این مقاله شاخص پایداری جوامع و کشورها در زلزله ها با در نظرگرفتن انواع پارامترهای دخیل ارائه خواهد شد. هدف نگاهی وسیع‏تر به عوامل و نیز نقش آنها در میزان مدل پایداری می باشد. این عوامل شامل فاکتورهای اجتماعی، اقتصادی، توسعه یافتگی، مهندسی و مشخصات لرزه ای می باشد. با کمک روش رگرسیون‏گیری خطی چندگانه، ابتدا تاثیرگذاری هر یک از متغیرها بررسی شده که این موضوع بر اساس آزمون های آماری برای ارزیابی معنی داری انجام شده است. در ادامه متغیرهای مستقل مربوطه مشخص و با توجه به روابط ارائه شده، شاخص ناپایداری اجتماعی کشورها، تعیین خواهد شد. در گام بعد نرخ نفوذ اختلال که نسبتی از زمان بازسازی خسارات زلزله به ضریب ناپایداری است، مشخص خواهد شد. این پژوهش ضمن موثر دانستن شاخص فساد، شاخص پایداری را متاثر از سه پارامتر، ضریب ناپایداری اجتماعی موجود، میزان تلفات و خسارات زلزله و مدت زمان بازسازی ارائه داده‏ است.

    کلیدواژگان: شاخص پایداری، نرخ تلفات و خسارات زلزله، شاخص شفافیت، شاخص جینی
|
  • Mehdi Maheri Peyrov, Ahmad Mirhashemi, Abdolreza Ghods*, Madjid Abassi Pages 1-14

    Using 48016 synthetic maximum Wood-Anderson amplitudes read from waveforms of 2650 events recorded by stations of Iranian Seismological Center (IRSC, irsc.ut.ac.ir), Iranian National Seismograph Network (INSN, www.iiees.ac.ir) and temporary seismic networks belong to Institute for Advanced Studies in Basic Sciences(IASBS, iasbs.ac.ir), the empirical attenuation curve (0logA) for local magnitude of Iran has been calculated as follows:0log(1.556 0.06) log(0.001637 0.0009) (100) 3100RAR where Ris hypocentral distance in km and 0Ais maximum displacement amplitude of shear wave in millimeter. The empirical attenuation relationship is valid for hypocentral distances equal or smaller than 800 km. MLamplitude is the maximum amplitude observed on a Wood-Anderson (W-A) seismogram. We manually picked the maximum amplitudes on the shear window of synthetic W-A seismograms having S/N of larger than 5. We calculated synthetic W-A seismograms by removing the instrument response of each record and convolving the resulting signal with the response of the standard W-A torsion seismograph. We assumed a static magnification of 2080 for the W-A instrument. The selected MLamplitudes are belonging to events at hypocentral distance of 10 to 800 km. Except for the Makran and South Caspian Basin regions, the ray coverage of the MLamplitude covers properly the whole Iranian Plateau.To reduce the scatter of magnitude residues and ensure a reliable calculation of the attenuation curve, the selected events belong to 45 precisely relocated seismic clusterswith location uncertainties of 5 km or less. The cluster approach produces redundancy in amplitudes arriving from a cluster to a given station. The redundancy will facilitate easy recognition and removal of possible outliers and thus provide a reliable estimate for the magnitude station correction. The magnitude station corrections attempts to absorb the regional attenuation difference relative to that dictated by average attenuation relationship derived in this work. The calculated attenuation curve shows a larger geometrical spreading for hypocentral distances closer than 100 km, representing a super-spherical geometrical spreading, and a smaller value for intrinsic attenuation for distances farther than 200 km once compared with the currently used MLrelationship of Hutton and Boore (1987). Excluding amplitudes with hypocentral distances smaller than 60 km results in a geometrical spreading coefficient close to spherical spreading, emphasizing the importance of near distances data on accurate estimation of the geometrical spreading value. The difference in the attenuation parameters between our results and those of Hutton and Boore (1987) relationship clearly indicates the crustal disparity of Iranian Plateau and southern California. This necessitates using the new attenuation relationship for Iran.We calculated the local magnitude empirical attenuation relationship by inverting the amplitude data set for the geometricalspreadin]gand intrinsic attenuation. We didnot considermagnitude station correctionsin ourinversion to avoid any tradeoff between the station corrections and attenuation parameters. We have shown that the magnitude residuals calculated by our local magnitude empirical relationship do not vary systemically versus hypocentral distance or magnitude. Due to the cluster-wise approach in selection of our events and partially because of the precise location of the selected events, the standard deviation of magnitude residues is about 0.19, significantly smaller than those reported by others.We calculated the station corrections by averaging the magnitude residual in each station. The station corrections vary between -0.44 to 0.32. Generally, stations located in Zagros, Alborz and north west of Iran have negative station correction representing amplitude amplification in these regions relative to central Iran and north east of Iran. The new attenuation relationship provides better estimates for the attenuation parameters and especially provides precise magnitudes at close hypocentral distances. By time, the expansion of Iranian seismic networks reduces the average distance spacing of Iranian seismic stations and thus usage of better local magnitude formula such as ours becomes more important.

    Keywords: Local Magnitude, Attenuation Curve, Station Correction, Iranian Plateau, Zagros
  • MohammadMajd Pezeshki, Hamid Alielahi Pages 15-33

    IntroductionGenerally, topographic effects are mostly introduced by hills, canyons, basins, and slopes. Besides, the topographic features produce significant seismic site-effects and can apply a crucial influence on the severity of building damages and its spatial distribution during earthquakes. Some experience observation such as Tarzana hill in the 1994 Northridge earthquake and the Kushiro Meteorological Observatory in the 1993 Kushiro-Oki earthquake, revealed the effective role of surface topographies such as hilland ridges on the seismic damage on the crest and hillsides. Reviewing the technical literature can deduce that the most studies about the effects of topography and the amplification patterns are limited to the linear behavior of the medium.However, theuse of linear models to estimate amplification patterns of waves can lead tomisleading resultsthanthe actual behavior ofthe soil, especially in the soft soils. The non-linear seismic behavior of the hill topographic features unknown in comparison withother types of topographic irregularities, e.g. basins or alluvial valleys. Hence, in this study, the effects of non-linear behavior of the hilltypeof topographies due to propagating SV waves using ABAQUS program in the form of parametric studies are discussed.In this regard, the trapezoidal-shaped hill has been taken into account for parametric study with four shape ratio (SR=0.1, 0.3, 0.5 and 0.7). Besides, in order to evaluate the effect of topography geometry, the semi-sine and semi-elliptical shapes of the hills have been studied. The constitutive model used herein is based on non-linear Kinematic Hardening model with Von-Mises failure criterion.Parametric StudiesIn this research, the finite element method (ABAQUS software) is used to evaluate the hill-typeTopographiesbehavior due to the vertically in-plane propagating incident SV waves. The hill-typeTopographieshas been excited vertically by Ricker-type pulse excitations. In this regard, two center frequencies (fp) of low (i.e. 1.4 Hz) and high (i.e. 4.3 Hz) have been considered to cover all frequency responses with a maximum acceleration equal to 0.3 g. The constitutive model used herein is based on non-linear Kinematic Hardening model, which is suitable for claymaterials. The results are presented as horizontal component amplifications (direct component) or vertical (indirect component).Spectral amplifications have been defined with respect to the free-fieldmotion, based on the maximum Fourier amplitude of the horizontal or vertical component, to the maximum Fourier amplitude of the Free-field motion. In this research, the horizontal and vertical component amplifications are shown, with AHand AVabbreviations, respectively. Moreover, the obtained results provided for the dimensionless distance (X/L) in which X is points from the center of the hill and L is half the width of the hill. All results have been compared in two linear and non-linear soil behaviors.Concluding RemarksThe obtainedresults indicated that considering the non-linear soil behavior can reduce seismic response of topographic effects in comparison with linear behavior. Furthermore, the maximum amplification appears on the crest of the hill in both linearandnon-linear behaviors.The non-linearamplification values reducedabout 15 percent at the lowerfrequencies for the trapezoidal-shaped hill with shape ratio (SR) of 0.7 compared with linear behavior. The seismic response of topographic irregularities tends towards free-field ground motion with far from surrounding hills. Besides, in this research the PGA values versus depth and the impedance ratio between inside of hill and its base materials have been studied. The results of this research can be used in seismic hazard and microzonation studies of various urban areas and to point out this the hills with softer materials than the bed, where soil behavior can be non-linearand usinglinear models, can lead tomisleading resultsthanthe actual behavior ofthe soil.

    Keywords: Non-linear behavior, Hill-TypeTopographies, Amplification, Numerical method, SV Waves
  • Mahzad Esmaeili Falak, Hooshang Katebi* Pages 35-49

    In this study, the impact of passing traffic and temperature reduction on the stability of the frozen soil wall is studied. Design geometry and mechanical properties of the frozen and unfrozen soil have been simulated according to the line 2 of Tabriz Subway. In order to numerical modeling, in all stages of the present study, the ABAQUS finite element software has been used. For modeling of unfrozen soil, mechanical properties resulted from experimental tests on the samples obtained from boreholes, then the Mohr-Coulomb constitutive model has been used. Since the frozen soil is an unconventional material, there is no reasonable constitutive model for that. Taking into account the actual site conditions (including unit weight, water content, void ratio and lateral earth pressure), more than 60 triaxial compressive tests were conducted on the frozensoil samples. Results from triaxial tests on the frozen soils showed that shear strength of frozen poorly graded sand increases with temperature reduction. Thus, by modeling the triaxial test on frozen soil in ABAQUS software, Mohr-Coulomb constitutive model was verified according to the experimental results of triaxial tests,so that it can model the strain-softening elasto-plastic behavior of frozen sand. The geometry of metro station excavation with the length of 104 m and the depth of 10 m was simulated according to the cut and cover method, consequently. Analysis results showed that lateral displacement of the frozen soil wall into the excavation due to the cut at middle section of the wall is greater than the supports section. Besides, the effect of passing traffic load on the middle section of the frozen soil wall is greater and it leads to larger lateral displacement into the excavation in thissection. The reason of this fact is the friction between unfrozen and frozen soil at the place of abutments. Therefore, in close section to abutments of frozen soil wall, thin and warmer (subzero) temperatures can be used. It is worth mentioning that the decrease in temperature has no significant effects on lateral displacement reduction of the frozen soil wallat abutments (about 2-3%), while, this value is up to 13% at the middle of the frozen soil wall. Eventually, the method of artificial ground freezing for supporting the excavations in this study (subway station of line 2, Tabriz subway) is recommended, which is adjacent to the main road and heavy vehicles traffic is possible.

    Keywords: Artificial Ground Freezing (AGF), Finite Element Method (FEM), Triaxial Compressive Test, Traffic Load, Tabriz Subway
  • Mahtab Shiravi, Mojtaba Moosavi *, Mohsen Ahmadnezhad Pages 51-60

    The destructions of earthquakes in Turkey and Taiwan (1999) have increased the interest of investigation on structures behavior in surface fault rupture propagation. Therefore, many studies have been accomplished to investigate the fault rupture and shallow foundations interaction. Based on the fact that a lot of structures are constructing and they have the possibility of facing fault emergence hazards due to the uncertainty in exact locating of surface fault emergence, the investigation on surface fault rupture hazards can give a better insight to explicit this issue and mitigate the damage to constructions adjacent or in active fault zones. In this research, numerical investigations on surface fault rupture hazards based on the evaluation of earthquake's field studies and seismic codes limitations for constructions in active fault zones have been employed.Based on field studies observations, four different fault zones withdifferent levels of hazard possibility for structures have been obtained. Some of the field studies results have been reviewed in this paper. For numerical studies, the two-dimensional, finite element software (Plaxis) was employed to study the surface fault rupture mechanism beneath the foundation in four different locations. In the mentioned Plaxis model, a rigid foundation with breadth,B=20and embedment depth, 𝐷=0𝑚was used. The model height was 25 m, and in order to model the bedrock, 5 m layer with Vs= 1000m/s was considered beneath the model. It should be mentioned that the fault has a dip angle,α=60°at the rock–soil interface, the length of fault propagation upward from the bedrock is 25 m and the fixed part of the model is 75 m.After locating the fault rupture trace on the ground in free-field condition, the foundation was located in four different positions in respect of free field and bearing pressure, q=90kpa(9-storey building) was imposed on all of them. Foundation rotations were calculated in these models and compared together. By moving the foundation toward the foot wall, the rotation amount decreased. In the following, to investigate the effect of load onreverse faulting, the bearing pressure was increased to 360 kpa for two foundation locations and the results discussed. Decreased foundation rotation and soil uplift in surrounding area were really noticeable. In order to investigate the seismic code limitations, two different models were made. The foundation was located in hanging wall at the distance of 15 m from free field location. In these models, bearing pressure of 90 and 360 kpa were examined. In this case, by increasing the bearing pressure, the amount of foundation rotation increased.The field studies results indicate, foundation location and structure weight have important impact on structure damages during surface fault ruptures. As mentioned, these results have been achieved in this paper. Briefly, the results of numerical models demonstrate that seismic codes limitations such as setback do not have necessarily safe construction outcome.

    Keywords: Surface fault rupture, Foundation, Interaction, Setback, Numerical analysis
  • Seyed Younes Jabbari, Reza Taghipour *, Mohsen Bozorgnasab Pages 61-72

    Because of the importance of the dam safety and to overcome the damages caused by the failure of the concrete dams under the earthquake, the seismic performance assessment of concrete dams needs more attention. This study deals with the investigation of the effect of the near-fault velocity pulse type ground motions and their effective parameters on the structural response. For this purpose, the Morrow Point arch dam has been considered as the case study. The dam is modeled in the SOLIDWORKS software and analyzed in the finite element ABAQUS software, considering the dynamic interaction of dam-reservoir-foundation and nonlinear behavior of concrete. In a nonlinear seismic analysis of dam-reservoir-foundation system, the crack propagation and the dam failure due to the low tension strength of concrete is necessary to be considered. Therefore, this study uses the concrete damage plasticity (CDP) model to consider the nonlinear behavior of concrete in tension and compression. Generally, near-fault ground motionshave short effective duration and contain long period pulses with big pulse amplitude. Three types of pulses have been introduced in the literature to show the velocity pulse type ground motions. Pulse A is a one-sided type (one half cycle pulse) thatresults in fling step in its displacement time history. Pulse type B represents for the forward directivity effects and contains a two-sided pulse (a pulse with two half cycles), which has a long period and amplitude in its velocity time history and its displacement time history includes just a one-sided pulse. Nevertheless, all the near-fault ground motions do not follow the forward directivity or fling step patterns; hence, another pulse type named C has been introduced. These pulses have at least three halfcycles in their velocity time histories, more than those of pulse types A and B. These pulses result in at least two half cycles in the displacement time history. In order to consider the effects of near-fault ground motions on the dam response, a collection of ground motions with B and C pulses in their velocity time histories have been selected and used in this study. For comparison purpose of the near-fault pulse like records, one should keep some of the effective parameters constant in the analysis process in order to study the effects of the other parameters. Unlike previous studies that only consider the peak ground acceleration (PGA) as the constant and common parameter of the records, the similar energy of the records is also taken into account in this study. The records are divided into two categories according to their specific energy density; so that, after scaling their PGA to 0.3 g, the specific energy densities of each category of the records are relatively similar. In the first group in which the maximum velocity, the Arias intensity and maximum displacement are relatively similar, the results indicate that the records which contain pulse type C, show more destructive responses. The difference is due to the shape nature (more half cycles) of this pulse type. In the second group, generally, the surveys also show more destructive responses of the records with pulse type C. Further investigations also present relatively much more effects of the "Arias Intensity" and "Pulse Duration” on the responseforthe records with relatively the same specific energy density. Besides, inthe case ofthe relatively the same values for the above-mentioned parameters, other parameters such as the maximum displacement are effective. The results of this study could be useful for the structures designed and constructed for the near-fault regions.

    Keywords: Concrete arch dam, Near-Fault Earthquake, Pulse-Like Records, Earthquake Energy, Arias Intensity, Duration of Pulse
  • Mohammad Khoshnam, Ali Kheyroddin, Mohammad Iman Khodakarami Pages 73-89

    Since Iran is located in a seismic region and due to the existence of trapezoidal or triangular terrains, because cities were not constructed based on a grid format in the past, in addition to the interest of contemporary architecture in designing irregular structures and structures with non-parallel lateral resisting system as defined in the 4thedition of the Standard 2800, thus this paper studies the seismic behavior of such structures. In this paper, three-dimensional modelling of steel structures with five different plans, each representing a percentage of irregularities of the lateral resisting system and three-dimensional modelling of a completely regular plan is presented for comparison. Besides, the torsional behavior of structures with lateral resisting systems is studied and compared with regular structures. The letter alpha is used with indexes indicating the level of anomaly of the carrier systems. The value of the alpha index is obtained by dividing the length of the removed openings by the length of the entire structure. In order to investigate the effect of height, the structures were modelled and studied using two, four and twelve floor models. The modelled structures are made of steel and possess a specific steel converging bracing system in line with Y and a modular steel folding frame along X. Moreover, the soil on the land is of type 2 in accordance with the 4thedition of the Standard 2800, and the structures are in accordance with articles six and ten of National Building Regulations. To analyze the structures, pushover analysis and dynamic linear analysis were implemented. In the pushover analysis, a load was analyzed in line with X and another load was analyzed in line with Y. Furthermore, for dynamic linear analysis, the peak acceleration recorded for Tabas, Iran and El Centro, USA earthquakes were used. The results obtained from this investigation and comparisons with regular structures suggests that in structures with non-parallel lateral resisting system, the highest torsion is related to the floor that has a distance of 60% to 70% from the base level. Besides, it was evident that during loading for the non-parallel lateral resisting system in line with Y, the torsion for longer order structures is up to 56 times, and for shorter order structures up to 8 times more than that of more parallel structures (structure model α0.2). Moreover, this ratio for loading on the lateral resisting system (X) was 6 and 8 times, respectively. Thus, it is noteworthy that for these types of structures, loading in (Y) direction has more disastrous results compared to other types of loading. The results obtained from torsion in elastic mode for pushover analysis in Y direction were different compared to other types. For pushover analysis in X direction, the elastic and non-elastic behavior of structures was not significantly different and could be neglected. The results obtained from dynamic linear chronological analysis were such that for models α0.8 and α1, loading for both directions experienced sudden aperture rotation compared to other structures. For structures of different floors and identical plan, the aperture of maximum twists can be reduced by increasing structure height. In short order structures, the torsion of irregular structures is up to 18 times more than the torsion of structure model α0.2. This torsion for high order structures is up to five times more than that of structure model α0.2. Increasing the height reduces the torsion. Besides, increasing height reduces the torsion ratio of irregular structures to more regular structures. The final point is that loading in a state of non-parallel lateral resisting system (Y) will entail more unpredictable and disastrous results.

    Keywords: Non-Parallel Resisting System, Steel Moment Resisting Frame, Concentrically Braced Frame, Diaphragm Torsion, Nonlinear dynamic analysis, Pushover
  • Reza Milanchian, Mahmood Hosseini *, Masoud Nekooei Pages 91-104

    In this paper, vertical seismic isolation (VSI) of a building for seismic response reduction by partitioning its structure into two different dynamically behaviorsubstructures and linking them together by viscous or visco-elastic links was investigated. To have a better understanding of the VSI features, study of a sample one-story single frame was supposed to be helpful. The Kelvin model was employed to represent the visco-elastic damper for which the stiffness and the damping coefficients are 𝑘𝑙and 𝑐𝑙respectively. In the vertically isolated structures (VIS) by using viscous or visco-elastic dampers, the influence of system dynamic characteristics, including natural frequencies and modal damping ratios in response reduction was of interest. In a comprehensive study, eigenvalue analyses of non-classically damped system were performed. These analyses were also carried out for different parameters of the connecting link. In this study, color contour graphs were employed for presenting the results. The more important advantage of this representation is creating the possibility to observe results of both stiff and flexible isolated structures in one individual graph. This graphical representation was called Vertical Isolation Contour Graph (VICG). Various ratios were considered for mass and stiffness of either of the two substructures to the mass and stiffness of the original structure to find out which ratios or range of ratios result in maximum seismic response reduction. Depending on these mass and stiffness ratios, three states of Mass Isolation, Interactional State, and Control Mass were differentiated in isolation behavior. To study the seismic performance of the one-story VIS, its response histories subjected to different earthquake excitations were obtained by a series of time history analysis (THA) cases. In these analyses, the aim was examining the effects of different parameters on the efficiency of the VSI. In the VSI, one of the main goals was the determination of an appropriate range of mass and stiffness ratios and the associated interconnecting link parameters to achieve the maximum possible seismic response reduction. To solve the governing differential equations of motion numerically, a program, developed by the authors in MATLAB environment based on Runge-Kutta method, was employed. Response ratios that Compare maximum displacements of each substructure of the isolated structure with that of the original structure were taken into account as the VSI performance assessment.The results of numerous analyses on different earthquakes excitation, performed in this study, implied that employing appropriate link parameters, proportional to mass and stiffness ratios, can lead to satisfactory levels of seismic response reduction. To investigate the advantage of the VSI in low-rise multi-story buildings, the seismic performance of a five-story building with the VIS was also studied. Based on the VICGs, it was observed that response ratios are satisfactoryin the short multi-story buildings for both short-period and long-period earthquakes. The following remarks can be stated as the conclusions of this study:By applying the VSI technique to low-rise multi-story buildings in Interactional State, up to 40% decrease in the seismic response of flexible substructure and even more in the stiff substructure is achievable.In the Mass Isolation state of the VSI, it is inevitable to use relatively large values of practical link damping as 15 to 20% to achieve the reliable response reduction.Link stiffness in the practical range less than 10% of the original structure does not affect response reduction of the flexible substructure.In the Interactional State of the VSI, it is practical to select a wide variety of mass and stiffness ratios with different link damping values.The values of inter-story drifts in low-rise multi-story VSI buildings is less sensitive to input earthquakes characteristics.

    Keywords: Vertical Seismic Isolation, Non-classical Damping, Viscous, Visco-Elastic Dampers, Runge-Kutta Method, Response History Analyses
  • Mohsen Gerami, AmirHesam Mashayekhi, Navid Siahpolo* Pages 105-117

    INTRODUCTIONIn recent years, various studies have been performed on the nonlinear responses of steel moment resisting frames under the near-fault earthquakes. Due to the event of near-fault earthquake, a significant amount of energy is exerted upon the structure, in a very short time. For this reason, the nonlinear distribution of demands differ with respect to those of the far-fault earthquakes. Investigating previous damages due to near-fault earthquakes indicated that significant inter-story drift demands are formed within the structure, which endanger its safety and stability. Near-field earthquakes containing forward directivity effects, due to the pulse in the velocity record, cause significant demands on the steel frames with respect to the ordinary earthquakes. Therefore, investigating the steel frames behavior as well as the higher modes effects under near-fault earthquakes is essential. For this purpose, five intermediate (ductility) steel moment resisting frames with 4, 7, 10, 15 and 20 stories under 20 far and near-fault accelerogram have been investigated. Finally, by examining the elastic responses of the single degree of freedom structure (SDOF) under considered accelerograms, the coefficients for transforming response of the SDOF structure to that of the MDOF structure are presented. The results of this research show that higher modes effects under the far-fault earthquakes are greater in comparison to those of the near-fault earthquakes. Besides, for about 30%-50% of the height of upper stories of the structures, the drift angle resulting from the near-fault earthquakes with the forward directivity effect is greater than that of far-fault earthquakes.RESEARCH METHODValidation of analytical models is one of the most important steps of a study. In numerical studies, especially when a considerable database should be prepared for the extraction of the empirical expressions, lack of certainty concerning the validity of that created model could lead to inaccurate results. To avoid this issue in this article, all models are validated. In order to investigate the higher modes effects, 4, 7, 10, 15 and 20 stories 5-span 2D frames selected. Each model has 4 m story height and 5m span length. The frames are intermediate (ductility) moment resisting frames. The structures being investigated in this research are designed completely based on the ANSI/AISC 341-05 and ASCE/SEI7-05 codes for gravity and seismic loads. Both the equivalent static lateral force and the modal response spectrum analysis were used for the models. ST37-type steel is used in design of the structures with the yield stress of 2400KgCm2and the ultimate stress of 3600KgCm2and the Poisson's ratio is 0.30. The lateral drift values in all the structures are compared with the allowable value in the ASCE/SEI7-05 code. All elements have been chosen as compact sections (limiting local buckling) assuming enough lateral supports.In this study, 10 far-fault accelerograms and 10 near-fault acceleration time history with forward directivity effect have been chosen to be used in the nonlinear time history analysis. The near-fault earthquakes have effects of forward directivityandloweffective duration as wellashighvelocity pulse period, chosenfrom thestations located less than 15 km from the fault. All chosen accelerograms in this research have the moment magnitude greater than 6.5 and the soil properties are of the Class D soil type based on the Fema 356 classification guidelines and are taken from the PEER website. The elastic response spectrum created by Seismosignal software. Besides, all acceleration time history has been normalized to their peak ground acceleration (PGA) before being scaled. All used accelerograms in this research are scaled according to the method presented in the Iranian Seismic Code (Standard 2800) and used in the NTHA method. Nonlinear time history analysis is also conducted by OpenSEES.CONCLUSIONThe higher modes effects under far-fault earthquakes are greater than those of the near-fault earthquakes with the forward directivity effect.By an increase in the structure height (period), the difference in seismic demands values of structures under the far and near-fault earthquakes decreases.Investigating the drift angle over the height of various structures shows that for about 30%-50% of the height of structure, at the upper stories, the response obtained from the near-fault earthquakeswith forward directivity effect is greater than the response obtained from the far-fault earthquakes.The buildings’ lateral load-resisting system is steel special moment-resisting frame. All buildings are 15 m in width.

    Keywords: Higher Mode Effect, Forward directivity, Near Fault Earthquake, Seismic Demands
  • Kaveh Faraji, Majid Mohammadi *, Nader Fanaei Pages 119-132

    IntroductionIn the last six decades, several experimental and analytical researches have been carried out to investigate the structural effects of the infill panels, especially in seismic loads. These studies showed that infill panels have considerable effects on the performance of infilled frames that should not be neglected in a safe and realistic design.In most of the buildings that require seismic retrofit, beams are not sufficient for the dead and live loads, and therefore, part of the vertical load is transferred to the ground through the walls. However, in most of the researches on infilled frames, the vertical load is not considered. In other words, very few studies investigate the effect of vertical load and its influence on the behavior of an infilled frame. These researches show that vertical load can have considerable effects on the strength and stiffness of masonry infilled frames.Research ProcedureThispaper presents a numerical study concerning the effects of vertical loads on the behavior of masonry infilled steel frame in seismic events. In this regard, an experimental study is selected that includes two identical infilled frame specimens [1]. One ofthe specimens is only subjected to lateral loading and the other one is subjected to lateral and vertical loading. Finite element method is employed to simulate and analyze the infilled frames. The specimens are modeled and verified based on the corresponding experimental results. Micro modeling method has been used, instead of modeling the mortar, half of its thickness is added to adjacent bricks. Concrete damage plasticity (CDP) approach was used to model the inelastic behavior of the masonry.ResultsThe analysisresults showed that the finite element modeling is well capable of predicting the behavior of the infilled frames. The initial stiffness of the analytical model matches with the experimental stiffness; however, as the loading continues, the strength of the finite element models is greater than that of the experimental specimen. This difference is due to the fact that the experimental specimen is subjected to cyclic loading and therefore experiences more strength degradation than the finite element model that is under monotonic loading. Based on the finite element study, the vertical load applied to the infilled frame is distributed in two ways, part of it (approximately 40%) is transferred through beam to column connection and the other part (approximately 60%) is applied to the wall. When the vertical load raises from zero to 200 kN (in which the vertical loading of 128 kN that is equivalent to 6.7% of compression capacity of the masonry prism is transferred to the masonry wall), strength and stiffness are increased 15% and 50%, respectively. The strength reduces when the vertical loading raises reach from 200 to 300 kN, and the stiffness remains constant approximately after vertical loading of 300 kN. It can be stated that up to a certain point, vertical load results in the increase in the stiffness and strength of the infilled frame, and after that point, the stiffness approximately remains constant and ultimate strength decreases.This occurrence can be justified as until a particular values vertical load increasesthe friction between the bricksandthus increases the strength. However, after this value, the vertical load turns into a destructive factor in combination with the lateral load effects. Ductility of the specimen with vertical loading of 200 kN is less than that of the specimen without the vertical loading.

    Keywords: Masonry infill, Steel Frame, Vertical Loading, Finite element modeling
  • Mostafa Shahriari, Morteza Bastami* Pages 133-150

    Earthquake is one of the most destructive natural events that threats human society and cause the loss of lives and assets. In the past decades, extensive efforts have been conducted to reduce the damages caused by the earthquake and various technical papers, guidelines and codes are published trying to achieve this goal. Observations indicate the formative influence of these efforts and reduction in losses. However, despite these progresses, the main problem is why there are significant differences in performance of communities in the face of the earthquakes. This issue is properly mentioned by Ambraseys (2010)that compares death toll caused by two different earthquakes with the same magnitude in New Zealand (3/9/2010) and Haiti (12/1/2010). Considering the Corruption Perceptions Index (CPI) and the number of deaths resulting from the earthquake (DRE) for shallow earthquakes occurred during the period 1980-2009of 6.8<M<7.9. Ambraseys concluded that “the hypothesis that there is an effect of corruption on the number of people killed by earthquakes is valid” (Ambraseys, 2010).This point of view to the earthquake damages should be extended and the effect of various socio-economic indicators that can represent the attitude of the societies to earthquake should be examined on the amount of earthquake losses. Some of these socio-economic indicators are listed below:-Corruption Perceptions Index (CIP)-Gross Domestic Product (GDP)-Urban to Rural Population Ratio-Human Development Index (HDI)-GINI Index-Rate of Literacy-Research and Development Expenditure-Number of Hospital Beds per Capita-Unemployment-Inflation Consumer Prices-Mobile Cellular Subscriptions-Government Effectiveness-Industrial Production-Road Density-Government Revenue-Time required to start a business-Voice and AccountabilityThe main step to gain the above-mentioned purpose is to define a new model in the society level, which makes it possible to compare the performance of various communities. The proposed comparative model makes it possible to investigate the effect of various socio-economic indicators on the stability of community and the amount of losses due to the earthquake in an appropriate manner. In order for the proposed model to become comparative, various modification factors are defined based on the intensity measure of the earthquake, population affected by the earthquake and the time of occurrence of the earthquake throughout the day. Finally, the proposed model is implemented on the earthquakes worldwide during 1995 to 2013.

    Keywords: stability, Community, Earthquake, Socio-Economic Indicators