فهرست مطالب

مجله علوم و مهندسی زلزله
سال هفتم شماره 2 (پیاپی 23، تابستان 1399)

  • تاریخ انتشار: 1399/07/13
  • تعداد عناوین: 12
|
  • محمد شکری کاوه، رضا منصوری، احمد کشاورز صفحات 1-20

    تشخیص خودکار و برداشت دقیق زمان ورود فازهای لرزه ای در تعیین مکان رویداد زلزله و تجزیه وتحلیل در سیستم های تشخیص زودهنگام زلزله دارای اهمیت ویژه ای است. در حال حاضر یکی از فرایندهای متداول برای شناسایی شروع فازهای لرزه ای روش دستی می باشد. این کار توسط یک تحلیلگر انجام می شود که به بررسی لرزه نگاشت می پردازد و سپس زمان شروع فازهای P و S را تشخیص می دهد. این روش بسیار وقت گیر و تحت تاثیر نظر یا تجربه شخصی کاربر می باشد. جهت تجزیه وتحلیل داده های حجیم تولید شده در شبکه های لرزه نگاری ارایه یک الگوریتم خودکار و قابل اطمینان ضروری است. از این رو در این مطالعه یک الگوریتم خودکار برای تعیین و قرایت زمان رسید فاز P از ترکیب نسخه حداکثر هم پوشانی تبدیل موجک گسسته [i] و روش تشخیص لبه [ii] و برای تعیین زمان رسید فاز S از ترکیب این نسخه از تبدیل موجک (MODWT) و روش خود برگشتی [iii] ارایه شده است. جهت ارزیابی الگوریتم های فاز خوانی، زمین لرزه 21/08/1396 سرپل ذهاب با بزرگای  مورد مطالعه قرار گرفته است. نتایج حاصل از قرایت موج P با برداشت های دستی و روش STA/LTA و برداشت های حاصل از موج S تنها با برداشت های دستی مقایسه شده اند. الگوریتم های فازخوانی خودکار نتایج قابل قبولی را نشان می دهند.

    کلیدواژگان: تبدیل موجک، برداشت فاز، زمان رسید، زلزله، موج P، S، STA، LTA
  • مهدی آشتیانی*، عباس قلندرزاده صفحات 21-36

    زلزله های ترکیه و تایوان در سال 1999 و چین در سال 2008، خرابی هایی را در ساختمان ها برجای گذاشت که ناشی از  برخورد مستقیم جابه جایی ناشی از گسل به آنها بوده است. پس از این وقایع، نظر جامعه مهندسی بیش ازپیش به این پدیده معطوف گردید. لذا از آن سال ها به بعد، تحقیقات نسبتا زیادی در خصوص اندرکنش گسیختگی ناشی از گسل و ساختمان ها انجام شده است. اگرچه عملکرد پی های سطحی در برابر جابه جایی های بزرگ ناشی از گسل های شیب لغز مورد بررسی قرار گرفته است، اما همچنان نیاز به بررسی های بیشتر در خصوص پارامترهای تاثیرگذار بر روی اندرکنش گسیختگی ناشی از گسل – پی احساس می شود. در این مقاله، یک سری مدل سازی های عددی اعتبارسنجی شده با نتایج آزمایش های سانتریفیوژ ارایه شدند تا پارامترهای موثر بر روی رفتار اندرکنشی بین گسلش معکوس و پی های کارگذاری شده در عمق، از قبیل عمق کارگذاری پی، صلبیت خمشی پی، وزن روسازه و موقعیت پی نسبت به بیرون زدگی گسیختگی ناشی از گسل در سطح زمین مورد بررسی قرار گیرند. نتایج نشان دادند که عمق کارگذاری پی، موقعیت پی نسبت به گسل و صلبیت خمشی آن در مقایسه با وزن روسازه تاثیر بیشتری بر روی رفتار اندرکنشی پی های سطحی و گسلش معکوس دارند.

    کلیدواژگان: پی سطحی، گسل معکوس، جابه جایی بزرگ، مدل سازی عددی
  • سعید غفارپور جهرمی، ساره بحرینی صفحات 37-50

    پیش بینی میزان جابه جایی و دوران دیوارهای حایل در زمان زلزله همواره یکی از مراحل مهم در طراحی لرزه ای و یا طراحی بر اساس عملکرد در دیوارهای حایل وزنی محسوب می شود. در این مقاله تلاش شده است به روش عددی عملکرد لرزه ای دیوار حایل وزنی تحت بار هارمونیک در شرایط فرکانس تشدید و برای عوامل مختلف و تاثیرگذار مورد بررسی قرار گیرد. متغیرهای مورد بررسی در این تحقیق خاک بستر، خاک ریز، هندسه دیوار، شتاب ارتعاش و فرکانس ارتعاش می باشند. خاک بستر مطابق با آیین نامه 2800 شامل خاک نوع یک تا چهار، خاک ریز پشت دیوار شامل سه نوع خاک دانه ای، هندسه دیوار شامل دیوار 3 و 6 متری و همچنین باری ارتعاشی از نوع هارمونیک سینوسی و در فرکانس اساسی سیستم (مود اول ارتعاش) مورد مطالعه قرار گرفته است تا جابه جایی لرزه ای بالا و پایین دیوار و متناظر با آن دوران تعیین شود. با انجام مدل سازی مختلف جابه جایی لرزه ای و ماندگار دیوار حایل وزنی مورد ارزیابی پارامتریک قرار گرفته است. نتایج حاصل از این تحقیق نشان می دهد جابه جایی لرزه ای و ماندگار دیوار در فرکانس اساسی با ارتفاع دیوار و شتاب زلزله نسبت مستقیم دارد اما با مشخصات مکانیکی و سختی خاک ریز پشت دیوار و شتاب متناظر گسیختگی خاک ریز نسبت معکوس دارد.

    کلیدواژگان: دیوار حائل وزنی، جابه جایی لرزه ای، دوران لرزه ای، بار هارمونیک، فرکانس اساسی، تحلیل عددی
  • حسین جهانخواه*، امیرحسین پریز، مرتضی بسطامی، مجید کیانی صفحات 51-65

    یکی از مشکلات متداول در مسیر طراحی لرزه ای سازه های زیرزمینی، نیاز به در اختیار داشتن پروفیل خاک محل است. لیکن به دست آوردن این اطلاعات، با توجه به طویل بودن بسیاری از این سازه ها، عموما هزینه قابل ملاحظه ای را در بر دارد. در این شرایط چنانچه دورنمایی تقریبی از عمق بحرانی سنگ بستر در اختیار باشد، در قضاوت مهندسی طراح می تواند نقش راهگشایی داشته باشد. در این حالت طراح این امکان را خواهد داشت که بدون اطلاع از عمق لایه خاک قرار گرفته بر سنگ بستر، برآوردی محافظه کارانه از عمق بحرانی جهت استفاده در تحلیل های عددی در اختیار داشته باشد. در این راستا در پژوهش حاضر جستجویی جهت یافتن عمق بحرانی برای سازه های زیرزمینی با مقطع مستطیلی در حوزه خطی در یک ساختار دو مرحله ای انجام پذیرفته است. در بخش نخست تلاش شده ارتباط میان بیشینه جابه جایی سنگ بستر و بیشینه جابه جایی درونی لایه قرار گرفته بر آن استخراج گردد. در بخش دوم این تحقیق، مدل های متعددی با استفاده از روش اجزای محدود برای سازه های زیرزمینی مستطیل شکل در نرم افزار آباکوس ساخته شده و تغییر مکان های به دست آمده در گام قبل از طریق مرزها به محیط خاک تک لایه، در قالب شکل مود اول لایه اعمال شده است. نتایج حاصل از این پژوهش حاکی از آن است که فرض کمترین عمق لایه در حوزه خطی، محافظه کارانه ترین فرض بوده و منجر به ایجاد بیشترین نیاز های لرزه ای در سازه می شود.

    کلیدواژگان: آنالیز لرزه ای، سازه های زیرزمینی مستطیلی شکل، اندرکنش خاک - سازه، عمق لایه خاک، نسبت عمق لایه خاک به سرعت موج برشی خاک، نیازهای لرزه ای، کرنش موضعی سازه
  • صدری شادابی، مسعود رابطی مقدم*، منصور پرویزی، مهدی زمانی لنجانی صفحات 67-78

    با توجه به کاربرد روزافزون تونل های جعبه ای شکل در شبکه های حمل ونقل بین شهری و درون شهری که اصولا به صورت تونل های کند و پوش اجرا می شوند، نیاز به بررسی تاثیر مخاطرات طبیعی مانند زلزله بر این سازه های ژیوتکنیکی و روش های کاهش بار لرزه ای این نوع سازه ها بیش ازپیش احساس می شود. امروزه استفاده از مصالح سبک وزن مانند ژیوفوم در مهندسی عمران جایگاه ویژه ای یافته و بسیاری از چالش های علم مهندسی را برطرف کرده است. در پژوهش حاضر، نقش مصالح ژیوفوم به عنوان خاک ریز برای تونل های کند و پوش بر نیروهای داخلی سازه تونل در حین زلزله مورد بررسی قرار گرفته است. برای این منظور از مطالعات عددی با استفاده از نرم افزار اختلاف محدود FLAC 2D استفاده شده است. پس از بررسی های انجام شده مشاهده شد که ژیوفوم به عنوان خاک ریز در سطح بالای تونل توانسته به خوبی نیروهای داخلی در حالت استاتیکی، لرزه ای و کل سازه تونل را تا چندین برابر نسبت به حالت خاک ریز خاکی کاهش دهد. این تاثیر برای دیواره و سقف تونل دیده شد. بر اساس نتایج تحقیق حاضر چنین نتیجه شد که خاک ریز ژیوفومی جایگزین مناسبی برای خاک ریزهای خاکی از منظر بهسازی لرزه ای در تونل های کند و پوش می باشد.

    کلیدواژگان: تونل کند و پوش، نیروهای داخلی، مصالح خاک ریز، ژئوفوم، پاسخ لرزه ای
  • حسین بختیاری، مسعود عامل سخی*، عبدالله سهرابی بیدار صفحات 79-89

    در این تحقیق، تاثیر زاویه شیب های ناهمگن بر پاسخ لرزه ای سطح زمین در برابر امواج مهاجم قایم SV با استفاده از برنامه تفاضل محدود  دو بعدی و در قالب مطالعات پارامتریک مورد مطالعه قرار گرفته است. مدل رفتاری استفاده شده در مدل سازی عددی، خطی الاستیک در نظر گرفته شد. در این راستا، به منظور بررسی تاثیر زاویه شیب های ناهمگن، شیب های با مشخصات لایه بندی مختلف در زوایای 25، 30، 35، 45 و 60 درجه مبنای مطالعات قرار گرفته است. همچنین در این تحقیق وابستگی اثر زاویه به پارامترهای ارتفاع شیب و فرکانس مورد بررسی قرارگرفته است. نتایج به دست آمده نشان می دهند تاثیر زاویه بر مقادیر پاسخ لرزه ای در مقایسه با پارامترهای دیگر کم است و تغییر موقعیت قرارگیری لایه ها اثر زاویه بر پاسخ لرزه ای را تحت تاثیر قرار نمی دهد. مشاهدات نشان داد تاثیر زاویه بر پاسخ لرزه ای در فرکانس های پایین و ارتفاع کم ناچیز است و افزایش فرکانس و ارتفاع سبب افزایش تاثیر زاویه بر پاسخ لرزه ای می شود. همچنین در انتها، با توجه به وابستگی اثر زاویه به هر دو پارامتر ارتفاع عارضه و فرکانس غالب موج مهاجم، تاثیر زاویه بر بزرگ نمایی تاج شیب های ناهمگن به ازای مقادیر مختلف (ارتفاع نرمالیزه شده) مورد بررسی قرار گرفته است.

    کلیدواژگان: پاسخ لرزه ای، موقعیت لایه، توپوگرافی شیب، بزرگ نمایی، رفتار خطی
  • مجید محمدی، سید محمد متولی امامی* صفحات 91-106

    یکی از روش های مرسوم برای مدل سازی میان قاب که در دستورالعمل های بهسازی نیز استفاده شده، استفاده از مدل دستک فشاری معادل است. در این مدل، برای تعیین مشخصات دستک اثر نوع اتصال قاب پیرامونی و بار قایم و همچنین تعداد دهانه ی قاب میان پر لحاظ نشده است. در تحقیق حاضر، به مطالعه آزمایشگاهی رفتار درون صفحه ی هفت قاب فولادی میان پر آجری تک دهانه و دو دهانه با اتصالات صلب و مفصلی پرداخته شده است. همچنین دو عدد از نمونه های آزمایشگاهی تحت اثر هم زمان بار جانبی و قایم بر روی تیر قاب میان پر قرار گرفته اند. در ادامه، مطالعه ی جامعی توسط تحلیل های پارامتریک بر روی قاب های میان پر با استفاده از روش المان محدود انجام شد و در پایان نتایج حاصل از تحلیل های آزمایشگاهی و عددی بر روی مدل دستک فشاری معادل اعمال شد. نتایج نشان داد که مقاومت و سختی میان قاب در قاب های با اتصال مفصلی کمتر از آن در قاب های با اتصال صلب است که بر این اساس فرمول های پیشنهادی نشریه 360 برای این نوع قاب ها اصلاح گردید. همچنین نشان داده شد که بار قایم تاثیر قابل توجهی بر مشخصات دستک فشاری معادل ندارد. ضمنا برای مدل کردن میان قاب ها در قاب های میان پر چند دهانه می توان از همان مدل استفاده شده برای میان قاب در قاب میان پر تک دهانه بهره جست.

    کلیدواژگان: قاب فولادی میان پر، بار قائم، صلبیت اتصال، تعداد دهانه، دستک فشاری معادل
  • محبوبه میرزایی علی آبادی، مهدی میرزایی علی آبادی* صفحات 107-118

    ساخت سازه های مقاوم در برابر بارهای انفجاری و ارتعاش شدید بسیار ضروری می باشد. سازه ها آسیب پذیری های گوناگونی در برابر بارهای وارده دارند. یکی از موارد آسیب پذیری سازه ها در برابر انفجار، عدم طراحی صحیح سیستم های سازه ای آنها می باشد. در این پژوهش به ارایه مدل بهینه طراحی سیستم سازه های قاب خمشی فولادی در برابر انفجار به روش طراحی بر اساس عملکرد پرداخته شده است. بدین منظور ابتدا قاب های دو بعدی 4، 5، 6، 7 و 8 طبقه تحت بارگذاری لرزه ای برای سطوح عملکرد IO، LS و CP بر اساس آیین نامه FEMA356 طراحی گردیده اند، سپس قاب های مذکور به عنوان طرح اولیه تحت بار انفجاری و بر اساس ملاحظات آیین نامه UFC3-340-02 و برای سطوح عملکرد فوق الذکر باز طراحی گردیدند. نتایج نشان می دهد سازه های طراحی شده در برابر بارهای لرزه ای، رفتار مناسبی در برابر بارهای انفجاری از خود نشان نمی دهند و به منظور تامین سطوح عملکرد قاب ها در برابر بار انفجاری لازم است از مقاطع قوی تری استفاده گردد. همچنین در این تحقیق مشاهده گردید با افزایش تعداد طبقات قاب ها، مقادیر پارامترهای سازه ای قاب ها در برابر بار لرزه ای و انفجار همگرا می شوند.

    کلیدواژگان: سیستم سازه ای، قاب خمشی فولادی، انفجار، طراحی بر اساس عملکرد، مدل بهینه، استفاده بی وقفه، بار لرزه ای
  • رضا کامگار*، یوسف عسگری، نورالله مجیدی صفحات 119-132

    در این مقاله تاثیر هم زمان بار انفجار و زلزله بر پاسخ دینامیکی غیرخطی سازه بررسی می شود. بدین منظور فرض می شود که در حین زلزله، تحریک زمین سبب بروز انفجار در نزدیکی سازه می شود. در ابتدا، فشار ناشی از بار انفجار با دو شدت متفاوت محاسبه و در فواصل مختلف زمانی، هنگامی که سازه تحت بار زلزله ی سرپل ذهاب قرار دارد، بر سازه وارد می شود. به منظور بررسی تاثیر هم زمان اعمال بار زلزله و انفجار بر پاسخ دینامیکی غیرخطی سازه، چهار مدل مختلف انتخاب می شود. در مدل اول، بار انفجار در حین شروع زلزله، در مدل دوم، بار انفجار در ابتدای زمان جنبش نیرومند زمین، در مدل سوم، بار انفجار در زمانی که بیشینه شتاب زلزله رخ می دهد و در مدل چهارم بار انفجار در انتهای زلزله بر سازه اعمال می شود. نتایج نشان می دهند در حالتی که زمان وقوع انفجار دقیقا مصادف با زمان رسیدن بار زلزله به بیشینه شتاب آن بوده است، بیشینه پاسخ سازه رخ داده است. به عنوان مثال در حالت استفاده از 1500 کیلوگرم ماده ی منفجره در فاصله ی پنج متری از سازه به همراه بار زلزله، بیشینه جابه جایی سازه 75/64 درصد بیشتر از مقدار مربوط به اعمال بار انفجار به تنهایی و همچنین 94/65 درصد بیشتر از مقدار مربوط به اعمال بار زلزله به تنهایی می باشد.

    کلیدواژگان: زلزله، انفجار، تحلیل دینامیکی غیرخطی، دریفت، شاخص خرابی
  • فرشاد براتی، مرضیه حیدری، افشین مشکوه الدینی، عبدالرضا سروقد مقدم صفحات 133-151

    سیستم سازه ای قاب محیطی مهاربندی شده، یکی از ساختارهای بسیار مناسب برای مقاومت در برابر بارهای ناشی از زلزله است. این سیستم دارای ویژگی های عملکرد لرزه ای بسیار مناسبی بوده و قابلیت های مقاومتی اسکلت ساختمان های بلندمرتبه را نیز به صورت چشمگیری نسبت به کاربرد ساختارهای سه بعدی قاب خمشی افزایش می دهد. پژوهش حاضر، دربرگیرنده نتایج مطالعه ویژگی های رفتار لرزه ای حاصل از کاربرد چهار سیستم مقاوم قاب محیطی مهاربندی شده در ساختمان های بلند با پیکربندی20 طبقه تحت اثر رکوردهای نیرومند حوزه نزدیک است. دو سازه مطالعاتی دارای آرایش پانل های متمرکز مهاربندی شده و دو سازه دیگر نیز دارای سیستم مهاربندهای بزرگ مقیاس می باشند. به منظور تعیین پارامترهای پاسخ سازه های مطالعاتی، تعداد زیادی تحلیل دینامیکی غیرخطی تاریخچه زمانی صورت پذیرفت. بررسی تحلیلی پارامترهای پاسخ حاصله، نشان گر عملکرد لرزه ای خوب اسکلت های مهاربندی شده تحت اثر رکوردهای حوزه نزدیک است. ملاحظه شد که به کارگیری آرایش های متمرکز مهاربندی در یک تعداد محدود و هم راستا از پانل های سیستم مقاوم قاب محیطی در اسکلت ساختمان های بلند، چندان مناسب نیست. همچنین دانسته شد که پارامتر های پاسخ لرزه ای غیرخطی مربوط به مدل20 طبقه با آرایش متمرکز پانل های مهاربندی شده، نسبت به مدل متناظر20 طبقه دارای مهاربندهای بزرگ، دچار تغییرات گسترده تری می شود. کاربرد المان های منفرد و نیز همگرای مهاربندی در پانل های پیرامونی یک سازه قاب محیطی مهاربندی شده، به تنهایی نمی تواند در کنترل حداکثر تغییر مکان جانبی و دریفت طبقات موثر باشد. سیستم قاب محیطی با مهاربندهای بزرگ مقیاس، دارای عملکرد بهتری از نظر کنترل آسیب پذیری و بهبود پارامترهای پاسخ لرزه ای نسبت به سیستم های مهاربندی شده منظم در ارتفاع سازه، است.

    کلیدواژگان: قاب محیطی مهاربندی شده، اسکلت مقاوم پیرامونی، مهاربندهای بزرگ مقیاس، رفتار غیرخطی، رکورد حوزه نزدیک، پالس سرعت
  • محمدحسین شوقی کلخوران، یاسمین استوار ایزدخواه*، محمود حسینی صفحات 153-168

    بسیاری از ساختمان ها پس از زلزله با توجه به اینکه آسیب دیده و از عملکرد خارج شده باشند و یا برعکس بدون آسیب جدی عملکردشان را حفظ کرده باشند، می توانند دو نقش متضاد بحران زا یا بحران زدا (خدمات رسان) ایفا نمایند. موفقیت واکنش اضطراری پس از زلزله در شهرها از یکسو به میزان آسیب های ساختمان های بحران زا و از سوی دیگر به عملکرد مناسب ساختمان های بحران زدا بستگی دارد. بر این اساس، با توجه به تاثیرگذاری نقش ساختمان ها در مدیریت واکنش اضطراری پس از زلزله، ضروری است نقش آنها شناسایی شده و مورد ارزیابی دقیق قرار گیرد. به منظور برآورد خسارت ساختمانی و تلفات انسانی، معمولا طبقه بندی ساختمان ها بر اساس نوع سازه، تعداد طبقات و سن بنا به انجام می رسد. با توجه به زلزله های گذشته، علاوه بر این سه عامل، شاخص های دیگری نیز در آسیب پذیری ساختمان و خسارت ناشی از آن دخیل است که بهتر است در رده بندی ساختمان ها در نظر گرفته شود تا قابلیت اطمینان به دست آمده افزایش یابد. این پژوهش با هدف ارتقاء روش های ارزیابی ساختمان های تاثیرگذار در واکنش اضطراری به کمک دخیل نمودن شاخص های دیگر صورت پذیرفت و به عنوان نمونه در محله چیذر تهران پیاده سازی و با روش های رایج مقایسه شد. برای به دست آوردن اطلاعات از برداشت های میدانی، جهت بررسی آسیب پذیری لرزه ای و رده بندی ساختمان ها از دستورالعمل 364 و برای تخمین خسارات و تلفات از روش های جایکا و کوبرن- اسپنس استفاده شد. تعداد ساختمان های بررسی شده 1663 عدد بوده که 9 درصد آنها با آسیب پذیری لرزه ای کم، 6 درصد متوسط و 33 درصد زیاد برآورده شدند و مابقی خارج از دستورالعمل هستند. طبق روش پیشنهادی تلفات حاصله برای دو سناریوی شب و روز در بدترین شرایط 6/9 و 10 درصد کشته برآورد شد. بررسی ها نشان داد که در خیابان های اصلی به علت وجود ساختمان های بلند از یک سو و کم بودن عرض معابر از سوی دیگر، احتمال مسدود شدن راه ها وجود دارد. در صورت اعمال صحیح مدیریت واکنش اضطراری و اقدامات مربوطه برای سناریوی روز جان 437 نفر و برای سناریو شب جان 500 نفر می تواند نجات یابد.

    کلیدواژگان: مدیریت واکنش اضطراری، ساختمان های تاثیرگذار، آسیب پذیری، ارزیابی سریع لرزه ای، خسارت
  • ارتقاء عملکرد لرزه ای ناحیه اتصال تیر به ستون در ساختمان های تیر فولادی- ستون بتنی با استفاده از کامپوزیت های سیمانی مهندسی شده
    آرین جوادی زنوزی، فریبرز ناطقی الهی، ایوب دهقانی صفحات 169-190

    در سال های اخیر استفاده از قاب های خمشی مرکب متشکل از ستون های بتنی و تیر های فولادی (RCS) مورد توجه زیادی قرار گرفته است. این سیستم با ترکیب بهینه عناصر سازه ای فولادی و بتنی از محاسن هر دو سیستم بهره می برد. در این نوع سازه ها شناخت رفتار ناحیه اتصال تیر به ستون و مکانیسم شکست در اتصالات اهمیت عمده ای دارد. جایگزین نمودن بتن ستون در این اتصالات با بتنی توانمند و انعطاف پذیرهمچون بتن مهندسی شده (ECC) قادر است عملکرد لرزه ای این نوع از سازه ها را بهبود دهد. در این تحقیق دو نمونه از این اتصالات با تیر میان گذر، در نرم افزار المان محدود ABAQUS مدل سازی و با نمونه آزمایشگاهی موجود صحت سنجی شد. رفتار غیر خطی هشت مدل از اتصالات تیر فولادی، ستون بتنی با استفاده از بارگذاری استاتیکی مورد بررسی قرار گرفت. نتایج نشان دادند که عملکرد این اتصالات با محصورشدگی بتن ناحیه اتصال رابطه مستقیم دارد. در ادامه جهت تسهیل جزییات اتصال و ارتقاء رفتار آن، بتن ECC در دو حالت متفاوت، در گره اتصال و کل ستون، جایگزین بتن معمولی در اتصالات گردید. در پایان پس از مقایسه نتایج عملکرد این نوع از اتصالات، یک مدل پیشنهادی اولیه با بتن ECC ارایه شد که علاوه بر افزایش ظرفیت این اتصالات، رفتار بسیار پایدارتر و مطلوب تری از خود نشان می دهد.

    کلیدواژگان: اتصال RCS، تیر میان گذر، بتن مهندسی شده ECC، عملکرد لرزه ای
|
  • Mohammad Shokri Kaveh, Raza Mansour *, Ahmad Keshavarz Pages 1-20

    Automatic seismic phase picking algorithms are one of the current research topics and have special significance in seismic data processing requirements. One of the most fundamental tasks in seismology is the identification arrival time of seismic phases such as the compressional or P-wave, transversal or S-wave, Rayleigh-wave, Love-wave, reflected and refracted wave from boundary layers must be identified. Seismic phase arrival time identification enables scientists to derive important geophysical and seismological information, such as the geotectonic settings, structure of the earth’s interior, seismicity of an area and seismic hazard assessment. Traditionally, these quantities were measured manually by human experts, but as seismic networks have grown worldwide, such tasks have been increasingly taken up by automated algorithms. because seismic network or even a single station operating continuously at high sampling frequency produces an enormous amount of data, processing of such a volume of waveforms manually is very time-consuming and requires considerable manpower. In addition, due to human error, incorrect detection of the phase can affect future studies. Therefore, it is needed to an alternative more efficient, faster, and accurate method that reduces the human, financial and time costs and also decreases the probability of errors. Hence, in recent decades, significant efforts have been made to develop automatic phase picking methods. Wavelet transform is a tool in the analysis of nonstationary signals such as the seismic signal. This is due to the ability of the wavelet transform to resolve features at various scales [1]. In particular, there are two types of wavelet transforms, orthogonal as discrete wavelet transform (DWT) and non-orthogonal as maximal overlap discrete wavelet transform (MODWT). DWT is useful in decomposing time series data into an orthogonal set of components with different frequencies. Whereas MODWT is a variant of DWT that can handle any sample size. The smooth and detail coefficients of MODWT multiresolution analysis are associated with zero phase filters and produces a more asymptotically efficient wavelet variance estimator than the DWT [2]. Working in the wavelet domain allows multiresolution analysis of the waveform, and provides the means to distinguish the phase arrival from random or systematic noise. In this work, we take advantage of the wavelet transform properties and define characteristic functions to detect P- and S-wave arrivals. The version of the maximum overlap discrete wavelet transform (MODWT) is used to determine and picking the arrival time of the P and S phases. The methodology of this study is divided into two parts: the first part is about the determination of the P arrival time obtained by processing the stacked envelop of the wavelet transform coefficients. The second part is determining the S arrival time, the automatic S-phase detection algorithm that we present in this paper is a combination of wavelet transform (WT) and AR model. The estimation of arrival time of the S wave is done in two steps. At first, an initial estimation of arrival time is calculated using the MODWT transform. In the next step, the final estimation of the S wave arrival time is calculated using an AR model. Method is tested on a significant number of Kermanshah cluster earthquakes. The results of automatic phase picker algorithm in this study have been compared with the STA/LTA method to assess the accuracy.

    Keywords: Wavelet Transform, Phase Picking, Arrival Time, Earthquake, P, S wave, STA, LTA
  • Mehdi Ashtiani *, Abbas Ghalandarzadeh Pages 21-36

    Observations after the 1999 Turkey and Taiwan earthquakes and the 2008 China earthquake have indicated that the structures experience different levels of damages induced by faulting dislocation. Numerous studies have been conducted on the most common types of foundations such as shallow foundations, pile and caisson foundations subjected to faulting by means of numerical and experimental investigations. The parameters affecting the interaction of a reverse fault rupture with a shallow embedded foundation have been investigated by experimentally validated numerical models using ABAQUS software. These parameters are the embedment depth of foundation, the bearing pressure of foundation, the rigidity of foundation and the foundation position. The reverse fault rupture at a dip angle of 60° propagates in a moderately dense sand layer and interplays with the embedded foundation. A summary of conclusions is as follows: The behavior of foundation and the development of rupture mechanisms are fully dependent on the location of the foundation relative to the fault rupture and the magnitude of the fault offset. Depending on the foundation position, the loss of support of the foundation takes place either under the edges (i.e. the hogging deformation) or under the middle (i.e. the sagging deformation) of the foundation. The foundation experiences the loss of support and stressing even for the indirect-hit case when the fault rupture emerges outside the foundation width. The increase of the weight of the foundation leads to diverting the fault rupture and less stressing of the foundation. However, the rotation of foundation depends strongly on the foundation position relative to the fault outcrop compared to the weight of the foundation. By increasing the embedment depth of the foundation, the weight of the foundation has no beneficial effect for the behavior of shallow foundation and the kinematic constraint of deeper foundation causes to significantly increase the rotation of the embedded foundations. As the embedment depth increases, the rotation of the foundation decreases for the same rupturing mechanism. It can be attributed to the similar performance of a deeper shallow embedded foundation to that of a deep foundation (such as a caisson foundation). However, the rotation of the foundations with the different embedment depths is largely dependent on the position of the foundation relative to the outcropping fault rupture and the magnitude of the fault offset. Also, the results show that the different fault-induced mechanisms such as footwall, gapping and hanging wall may happen depending on the magnitude of fault offset for a given embedment depth and position of the foundation. Depending on the rigidity of the foundation, the rigid shallow foundation may diffuse/divert the fault rupture beyond the foundation, whereas by contrast with a flexible foundation, the fault rupture will develop as a distinct rupture and strike the foundation underneath. In all cases, the foundation rigidity is an important parameter controlling the stressing of the foundation. Decreasing the rigidity of the foundation causes to increase the normalized bending moment of the foundation and the foundation may experience substantial distress. The results indicate that rigid shallow foundations are more suitable than flexible ones for a structure subjected to a major reverse fault rupturing underneath.

    Keywords: Shallow Foundation, Revese Fault, Large Dislocation, Numerical Modeling
  • Saeed Ghaffarpour Jahromi *, Sareh Bahreini Pages 37-50

    The retaining wall is a wall that creates a lateral support for vertically or vertically oriented walls for the soil. Simplicity of construction and ease of use are the features of the use of gravity retaining walls. The prediction of the displacement and rotation caused by the earthquake is an important point in the seismic design of the gravity retaining walls. Excessive displacement does not only damage the walls itself, but also causes irreparable damage to adjacent retaining walls. The forces imposed on the wall by the earthquake depend on factors such as the behavior of the soil under the wall, the behavior of the embankment, the flexural behavior and the wall's inertia, and the nature of the entrance movements. One of the techniques for wall design is a power-based method and a performance-based method. In this paper, using the ABAQUS / CAE finite element software, the seismic performance of the gravity retaining wall is evaluated under harmonic load. Four types of subsoil according with the 2800 regulations and three types of backfill (sand behind the wall) are used. Two types of wall are 3 and 6 meters under sinusoidal load at the fundamental frequency of each model and the effect of backfill, subsoil and height of the wall on the top displacement, bottom displacement and rotation were investigated. The results of this research show that as the soil around the wall is denser, the wall displacement decreases. The amount of displacement increases with increasing wall height. The higher the density of the soil in the site, the lower the maximum vertical stress on the wall. By changing the soil profile and increasing soil bed density, the mean value of the average maximum absorbed acceleration increases. Mechanical properties of the embankment such as density, internal friction and hardness, effect on the average maximum acceleration and maximum vertical stress. With increasing dynamic loading; the average maximum acceleration is increased. Under the basic vibration of the wall, the height and dimensions do not have any effect in maximum absorbed acceleration. By increasing the wall height, the vertical stress decreases. The result of this research show that dimension and physical characteristics of retaining wall and soil properties of embankment have effect on absorbed maximum acceleration and the maximum vertical wall stress in different conditions of seismic acceleration by numerical method. The numerical models were analyzed for sinusoidal harmonic loading at the fundamental frequency of the model (natural frequency of the first mode). The results of this research are summarized as follows. By increasing the wall height, the vertical stresses generated in the model are reduced. The increase in wall height does not have a significant effect on the average maximum absorbed acceleration. With increasing soil density around the wall (backfill and foundation) due to the increased hardness of the soil, the wall shows a good resistance to the forces involved and creates a lower stress in the wall. increasing the density of soil around the wall (backfill and foundation), followed by increasing density and hardness, the average maximum acceleration absorbed by the part of the backfill that is in contact with the back of the wall increases.

    Keywords: Gravity Retaining Wall, Cyclic Loading, Displacement, Rotation, Numerical Analysis
  • Hossein Jahankhah *, Amir Hossein Pariz, Morteza Bastami, Majid Kiani Pages 51-65

    In seismic design of engineering structures, usually bedrock acceleration-displacement response spectra are within hand. The crucial issue in seismic design of underground structures is the serious need for the geotechnical logs to be used in numerical simulations. However, large dimensions of typical sub-surface structures like tunnels, subways and sewage water transporting routes, require considerable logging efforts based on notable budgets. As such structures would lay several ten meters under the ground surface, the mentioned efforts and budgets expand with respect to that of required for over ground systems. Hence, any approximate estimation on critical bedrock depth can help to draw reasonable engineering design judgments. Providing such information, regardless of precise log information, guide the designer to implement conservative assumptions and reach upper bound estimations on seismic demands. To approach this goal, here, an investigation is conducted to find such critical depth parametrically. The structures are considered as box shaped long embedded systems for which 2D rectangular cross sections are studied linearly and a simple procedure for fast and conservative seismic design is proposed. To this end, the article constitutes of two parts. At first, the approximate relation between maximum bedrock displacement (DB) and maximum internal drift of the soil layer over the bedrock (DL) is explored. It is notable that in underground soil-structure interaction, the soil deformation field surrounds the structure and through an interaction procedure, both soil and structure converge to an equilibrium state. So, maximum internal deformation of the soil layer, in which the structure is embedded, plays an important role in seismic demands of subsurface structures. In this part, a set of 20 real bedrock records is utilized to reach the approximate DB-DL relation through a linear well-known closed form equation for single layer transfer function. The bedrock histories were all selected from the sites with shear wave velocity, Vs, over 700 m/s. The results of this part show that the average value of DL, for the selected set of records, is approximately close to the value of DB. In the second part, various Finite Element (FE) models were developed in ABAQUS software including different structures. Then, the resulted DL from previous step was applied to the boundaries of FE models, in first-mode-shape of each layer. It is supposed that the total layer deformation comes from its first mode shape. Next, the uppermost flexural, shear and axial strains are tabulated and sketched against the parameter H/Vs, where H is the soil layer depth. This process was repeated for structures with different values of flexibility ratio, FR, and aspect ratio, AS. The effect of h/H ratio is also reviewed where h is the structure vertical dimension. The depth of the structure from ground surface is set to a constant value and just a single layer over the bedrock is taken into account. The trends of strain demands and critical layer depths are the explored and discussed. It is shown that, as the distant of the structure and the bedrock diminishes, the strain demands increase. This happens as the maximum gradient of soil deformation occurs near the bedrock surface. This makes clear that, in the absence of enough information on soil layers, it is suggested that the minimum stratum laye5r depth to be considered for a conservative analysis. Such depth, which can be assumed as the overburden depth plus structural vertical height, is expected to produce the upper most seismic demands for preliminary design of underground structures. It should be noted that this research is based on linear analysis and complementary investigations, considering different types of nonlinearities, are required to reach more precise conclusions with more reasonable safety factors.

    Keywords: Critical Bedrock Depth, Seismic Design, Box Shaped Structures, Underground
  • Sadri Shadabi, Masoud Rabeti Moghadam *, Mansour Parvizi, Mahdi Zamani Lenjani Pages 67-78

    According to increasing demand of box-shaped tunnels in transportation networks, which are mainly built as cut and cover tunnels, the impact of natural hazards such as earthquakes on these geotechnical structures and seismic load reduction methods of these types of structures is more important than before. Nowadays, the use of lightweight materials such as geofoam plays fundamental role in civil engineering and has solved many of the challenges of civil engineering. In the present study, the role of geofoam materials as embankments for cut and cover tunnels on the internal forces of the tunnel structure during the earthquake have been investigated. The numerical modeling was performed by two-dimensional finite difference software, FLAC 2D v7.0. The results of an experimental study were used to verify the numerical model. Time histories of acceleration and bending moments for Kobe and Northridge earthquakes were examined. Based on the analysis, it was observed that the software was able to predict the results of the centrifugal experiment well and provided reliable results. EPS19 has been used as a geofoam embankment in the analyzes. The acceleration time history of the Kobe and Northridge earthquakes with a maximum acceleration of 0.3 g has been used in the analysis. In the numerical model of the present study, the equivalent linear model (ELM) has been used to model the behavior of the geofoam. Mohr-Coulomb elastoplastic model was used in soil behavior modeling for static analysis. The behavior of the soil in dynamic analyses was considered as nonlinear and modeled with hysteretic damping. The results are determined in the form of bending moment and shear force diagrams for the roof and wall of the tunnel. The diagrams were provided for static and seismic loading conditions. According to the results of numerical studies, it was observed that the geofoam model has a very good performance in reducing the bending moments and shear forces in static and seismic conditions. Present study shows that geofoam, as the cover material of the cut and cover tunnel, is able to reduce internal forces of the tunnel structure in static, seismic loading condition compared to the soil. Based on the results, it was concluded that geofoam is a suitable material for retrofitting the cut and cover tunnels during earthquakes.

    Keywords: Cut, Cover Tunnel, Backfill Material, Geofoam, Seismic Response
  • Hosein Bakhtiari, Masoud Amelsakhi *, Abdollah Sohrabi Bidar Pages 79-89

    Source, site and path effect are three important parameters in ground seismic response in any area (flat surface and sloping surface). Site effect is a key parameter to study the evaluation of the seismic response of a hill or valley particularly in soil. Another important parameter is the soil layer combination in height of a hill, for example. In other words, appearing a loose and weak layer between dense soil layers, makes different seismic responses in comparison with a full homogenous slope in height. As we know in nature, there is not full homogenous slope or hill, so it is very important to study this problem in evaluating ground seismic response. We should take part soil slopes and rock slopes in seismic analyses. In this research, only non-homogenous soil hill is studied. We know that the slope angle has a clear role on the hill seismic response, so the amplification can be seen in top of the hill. It is clear that gathering energy in a bounded local area, top of the hill, can make a great response at top of the hill, as we call it, amplification. Amplification is related to different parameters such as soil layer parameters, geometry, slope angle, wave type and its characteristic as dominant frequency, and maybe so many other parameters that researchers have not studied yet. Another important civil engineering problem is construction on top of the slopes or near them. Therefore, in high seismic disaster areas, we may have large demolition of structures if designer has not implemented the site effect on his/her analysis. Recently, in 2800 Code (4th edition), topography effect is implemented in a simple table due to the slope angle to increase horizontal acceleration parameter. It should be noted that other different parameters may have great effect on ground seismic response and slope angle is one of them. In this research, effects of non-homogenous slopes’ angle on seismic response of ground surface due to the incident SV wave using FLAC 2D finite difference software are studied. Different parameters are used in this research. The numerical and behavioral model linear elastic is selected. In order to study the effect of non-homogenous slopes, slopes with different materials with 25, 30, 35, 45 and 60 degree are selected. In addition, dependence of slope angle with other slope height and incident wave frequency are studied. Obtained results show that the effect of slope angle on seismic response, in comparison with other studied parameters, are low and it may be neglected. Besides, it can be seen that changing the location of soil layers, does not have high effect on ground seismic response. The results show that the effects of slope angle in low frequencies and also low height are small on ground seismic response. Thus, increasing these parameters, frequencies and slope height, increases the effect of slope angle on ground seismic response. In this research, due to dependence of slope angle to slope height and incident wave frequency on ground seismic response, the effect of slope angle on amplification of non-homogenous slopes are studied based on different  (normalized height). In , the effect of slope angle on amplification response can be neglected. In other words in this condition the effect of slope angle is small but increasing , increase this effect. For  the amplification response in slopes with 25 degree is the highest in comparison with 30-degree slope. In addition, these results can be seen in 30-degree slope in comparison with 35-degree slope.

    Keywords: Seismic Response, Layer Position, Topography of Slope, Amplification, Linear Behavior
  • Majid Mohammadi *, Sayed Mohammad Motovali Emami Pages 91-106

    Infill panel significantly affect the behavior of surrounding frame. The infill walls are usually considered as non-structural element in analysis and designing process of the structures which is due to inherent complexity and uncertainty behavior of the infill wall and its materials. However, the seismic codes and guidelines are recommended to consider the effect of infill walls on strength and stiffness of the frame structures by using some simple macro models as well as changing the fundamental period of the structures. Among many model proposed by researchers in the literatures, the equivalent diagonal compression strut model is more prevalent, which is recommended by seismic guideline codes. Due to dead and live loads, the presence of vertical loads applied on the beams and columns of the frames is unavoidable. Moreover, the rigidity of beam to column connections of the frame is different and changed depending on the connection types. The previous studies have shown that the presence of vertical load on the frame or the rigidity of frame joints affect the behavior of infilled frames. However, these effects are not considered to estimate the mechanical and geometric characteristics of equivalent strut in seismic codes. In other words, the previous researches have not presented an obvious and explicit conclusion to take into account the vertical load and connection rigidity effect on the modeling of equivalent strut. Moreover, it is assumed that the equivalent strut of multi-bay infilled frame have the same characteristics of that in single-bay ones, which is doubtful based on results of previous researches in the literature. In this paper, the effect of vertical load, connection rigidity and number of bays on the seismic lateral behavior of infilled frames are investigated. For this purpose, an experimental program has been carried out to investigate the lateral behavior of infilled steel frames. Seven specimens included one bare frame and six infilled frames were tested under cyclic loading. The infilled frames were containing single-bay, double-bay frames, rigid frames and pinned frames. Also two infill specimens were tested under combined lateral and vertical loadings. Afterward, an extensive parametric finite element analyses were carried out to achieve more accurate results. The results also show that the stiffness and strength of infilled frames are increased by applying vertical load, but do not affect the properties of equivalent strut. Moreover, it is found that the contribution of infill panel on global behavior of infilled frames is decreased in specimens with pinned connections in comparison with the infill panels in rigid frames. It also concluded that using the struts with the same properties in multi-bay infilled frame are accurately acceptable. In other words, the properties of equivalent struts do not vary with the increase in the bay numbers in the infilled frames.

    Keywords: Infilled Steel Frame, Connection Rigidity, Vertical Load, Multi-Bay Infilled Frame
  • Mahbobeh Mirzaie AliAbadi *, Mahdi Mirzaie AliAbadai Pages 107-118

    The construction of resistant structures against blast loads and vibration is essential. Structures are vulnerable to the external loads in different areas. The initial purpose of designing against blast loads include life safety and the prevention of progressive, collapse based on economic considerations. Structures with these qualities are of great importance and should be protected against explosion. Structures with sensitive and expensive equipment. Structures with long-term guidance role. Structures that cause disruption when they are destroyed. The clear understanding of any occurrence and its consequences are required in order to provide an assessment. The literature review of designing steel frame structures against explosion is evaluated in the next part. Bogosian et al. [1] have modeled the blast load (300-1000 kips) on a structure, and in their result, there is a graph that shows the relation between the chance of occurring an event with weight and the distance of explosive materials. Liew [2] have modeled a five floors steel frame against blast and fire loads. The study on the columns of the structure has shown that local inelastic buckling in critical sections will occur in high strain rates. Izadifar et al. [3] have evaluated the effects of ductility on the behavior of steel frames against explosion. The graph of force against displacement has been drawn and the parameters of ductility has been studied. An eight-floor steel frame, which has been designed for service load (live and dead load) was evaluated under explosion by Urgessa and Arciszewski [4]. The results of the research show that the joints with side plates exhibit a better behavior than the conventional joints when blasting. They also behave more efficiently than conventional joints because of the use of these joints to move the plastic hinge into the beam. By comparing the behavior of similar joints with differences in the thickness of the bonding sheet, it was shown that doubling the thickness of the bonding sheet reduces the in-plane displacement. Inappropriate design is the main reason for the vulnerability of these structures. The optimal model for performance-based design of steel framework structures resistant to explosion is provided in this study. For the purpose of the study, the authors assessed the three performance levels of IO, LS, and CP. The intended system for structures is the steel bending frame. In the first step, the structures are designed against seismic load for three levels of performance. In the second step, the structures were redesigned against the blast load. In order to investigate the behavior of structures, the following parameters were investigated. Weight of structural materials used Assessment of the designed frames has shown that the weight of structural materials consumed by the specimens against seismic load is less than the weight of structural materials consumed against the blast load. Examine the horizontal displacement of the roofs of the floors According to the results, the horizontal displacement values of the roofs in the frames are lower than the seismic load compared to the explosive load. Check the absolute acceleration of the roofs of the frames The results show that in designing the frames against the seismic and explosive loads, the absolute acceleration of the roofs is reduced from IO to CP level. Also with respect to the amount of explosive and its distance to the frames and the amount of seismic load, it is observed that as the number of floors increases, the absolute acceleration of the roof of the frames is closer to each other under seismic load and explosive load.

    Keywords: Structural System Steel Bending Frame, Explosion, Performance Based Design, Optimal Model, Operational Performance, Seismic Load
  • Reza Kamgar *, Yousef Askari, Noorollah Majidi Pages 119-132

    This paper examines the simultaneous effect of blast and earthquake loads on the structural nonlinear dynamic responses of the structure. For this purpose, it is assumed that an explosion occurs near the structure during the earthquake, induced by the ground motion. Initially, the pressure caused by the explosion is calculated with two different intensities (i.e., 1000 and 1500 kg TNT at a distance of five meters from the structure) and is applied to the structure at different time intervals. It is assumed that the structure is excited by the Sarpol-eZahab earthquake. In order to investigate the simultaneous effect of earthquake and blast loads on the nonlinear dynamic responses of the structure, four different scenarios are considered. In the first scenario (State A), the explosion occurs at the beginning time of the earthquake, while in the second state (State B), the explosion happens at the time that the strong ground motion will be started. In the third state (State C), the blast load is applied to the structure at the time that the maximum earthquake acceleration occurs. Finally, in the fourth state (State D), the blast load is applied to the structure at the end time of the earthquake. It is assumed that during an earthquake, or at the beginning and the end of the earthquake, the earth's motion causes an explosion near the structure, which has been observed repeatedly in previous earthquakes and causing significant financial and human casualties. Therefore, to study the simultaneous effect of blast and earthquake loads on the structural nonlinear dynamic responses of the structure, a six-story steel structure modeled in OpenSees software is considered. The frame is modeled nonlinearly, and the Steel 02 material is used to model the frame members. Finally, the acceleration, drift, displacement, and base shear curves of the structure are computed. The results show that with increasing the amount of blast load, the structural response has generally increased. In addition, considering the different scenarios, the maximum response of the structure has occurred in state C. Besides, by increasing the amount of blast load, the maximum response of the structure has not been changed by considering the simultaneous effect of the blast and earthquake loads. In the case that the structure is only excited by the blast load, the results also show that the amount of base shear and base moment is much more than the same values ​​for the state that the structure is only excited by the earthquake load. The values ​​of roof rotation, roof drift, shear, and base moment for the states A and D are similar to these values when the structure is only affected by the blast load. This is due to the short time of the blast load and also the low intensity of the earthquake at the beginning time of the earthquake. Therefore, the earthquake load could not change the response of the structure in these cases. At the end of the earthquake, due to the lack of earthquake load, only the structure was excited by the blast load, and the same results occurred. For example, in the case of using 1500 kg of explosives at a distance of five meters from the structure along with the earthquake load, the maximum displacement of the structure is 64.75% more than the amount of the responses of the structure when it is only excited by the explosive load and also 65.94% more than the amount of the responses of the structure when it is only excited by the earthquake load. These values were increased by 146.12% and 3.44%, respectively, when 1000 kg explosive is considered at a distance of five meters from the structure.

    Keywords: Earthquake, Blast, Nonlinear Dynamic Analysis, Drift, Damage Index
  • Farshad Barati, Marzie Heydari, Afshin Meshkat-Dini *, Abdolreza Sarvghad-Moghadam Pages 133-151

    The braced tube structure is one of the most efficient lateral load resistant skeletal systems under seismic loads. This high-rise mega frame has desirable aspects in terms of seismic response. Also, this system increases the resistance potential of high-rise structures in comparison with three-dimensional steel rigid frames. The present study denotes the seismic response properties of four mega braced tube structural systems of 20-story with different bracing configurations, which are the same in plan and loading arrangements, subjected to strong near-field records. The two studied structures have skeletal configuration of centralized braced panels. Moreover, the two other studied models were designed based on mega braced tube system considered as the resistant structure. In order to assess dynamic response parameters of the studied structures, several nonlinear time history analyses were performed. The selected earthquake records contain a variety of wave-like characteristics such as long period pulses and high amplitude spikes in the ground velocity and acceleration time histories. The analytical evaluation of seismic response parameters indicates the desirable performance of mega braced tube structural systems under powerful near-fault records. The aforementioned seismic performances were investigated in terms of maximum lateral displacement, inter-story drift as well as absolute acceleration, relative velocity of floors and total base shear along with the integrated formations of skeletal nonlinear hinges. It was obtained that the concentrated configuration of a limited number of aligned braced panels in high-rise framed skeleton is not relatively suitable. Also, dynamic response parameters of the 20-story models with the configuration of centralized braced panels are influenced more while being subjected to near-field ground motions in comparison to the mega braced tube systems. The application of centralized braced panels would lead to the more intensive variation in seismic response parameters. It should be noted that the application of single elements as well as concentric aligned braced panels cannot be effective in controlling the maximum lateral displacement and drift demands. The structural vulnerability assessment indicated that mega braced tube structures have better seismic performance than the other type of resistant skeletons under influencing of large coherent velocity pulses which displayed in the time history of strong earthquake records.

    Keywords: Braced Tube Frame, Perimeter Resistant Skeleton, Large Scale Braces, Nonlinear Behavior, Near-Field Record, Velocity Pulse
  • Mohammad Hossein Shoghi Kalkhoran, Yasamin O. Izadkhah *, Mahmood Hosseini Pages 153-168

    In the aftermath of a large earthquake many buildings can have either disaster-mitigation or disaster-creation roles depending on the extent of their damage and performance conditions. The success of the emergency response in cities depends on the damage extent of the disaster-creative buildings, on the one hand, and the appropriate performance of the disaster-mitigative buildings, on the other. On this basis, with regard to the effective role of buildings in disaster response management after earthquakes, it is important to recognize and evaluate their roles. In order to evaluate the building damage and casualties, the classification of buildings are done based on the type of the building, number of stories and the age of the building. With regard to the previous earthquakes, in addition to these three factors, some other factors should also be considered in the classification of buildings in order to reach more reliable results. This study was conducted with the aim of upgrading the evaluation method of influential buildings by contributing more factors. A case study was done in selected Chizar neighborhood located in the eighth section of district 1 in capital city of Tehran. For structural vulnerability, guidelines No. 364 (Rapid Visual Screening for potential seismic hazard), was used. JICA and Coburn & Spence methods were utilized for risk assessment and evaluating losses and damages. Based on the results of structural vulnerability, 9% of the buildings had low vulnerability, 6% had medium vulnerability and 33% had relatively high vulnerability. The rest of the buildings were out of the scope of the mentioned guidelines. Victims for night and day in the worst scenario (without emergency assistance) are estimated 9.6% death for night scenario, and 10% death for day scenario. The results showed that in main streets due to the existence of tall buildings and the narrowness of the pathways, there is a threat of route blockage. In case of appropriate emergency disaster response and provisions, 437 people can be saved in day scenario, and 500 in night scenario, respectively.

    Keywords: Influential Buildings, Emergency Response, Post-Earthquake, Disaster Mitigation, Disaster Creation
  • Upgrading the Evaluation Methods of Influential Buildings for Post-Earthquake Emergency Response
    Mohammad Hossein Shoghi Kalkhoran, Yasamin O. Izadkhah *, Mahmood Hosseini Pages 169-190

    In the aftermath of a large earthquake many buildings can have either disaster-mitigation or disaster-creation roles depending on the extent of their damage and performance conditions. The success of the emergency response in cities depends on the damage extent of the disaster-creative buildings, on the one hand, and the appropriate performance of the disaster-mitigative buildings, on the other. On this basis, with regard to the effective role of buildings in disaster response management after earthquakes, it is important to recognize and evaluate their roles. In order to evaluate the building damage and casualties, the classification of buildings are done based on the type of the building, number of stories and the age of the building. With regard to the previous earthquakes, in addition to these three factors, some other factors should also be considered in the classification of buildings in order to reach more reliable results. This study was conducted with the aim of upgrading the evaluation method of influential buildings by contributing more factors. A case study was done in selected Chizar neighborhood located in the eighth section of district 1 in capital city of Tehran. For structural vulnerability, guidelines No. 364 (Rapid Visual Screening for potential seismic hazard), was used. JICA and Coburn & Spence methods were utilized for risk assessment and evaluating losses and damages. Based on the results of structural vulnerability, 9% of the buildings had low vulnerability, 6% had medium vulnerability and 33% had relatively high vulnerability. The rest of the buildings were out of the scope of the mentioned guidelines. Victims for night and day in the worst scenario (without emergency assistance) are estimated 9.6% death for night scenario, and 10% death for day scenario. The results showed that in main streets due to the existence of tall buildings and the narrowness of the pathways, there is a threat of route blockage. In case of appropriate emergency disaster response and provisions, 437 people can be saved in day scenario, and 500 in night scenario, respectively.

    Keywords: Influential Buildings, Emergency Response, Post-Earthquake, Disaster Mitigation, Disaster Creation