فهرست مطالب

Industrial Engineering International - Volume:14 Issue: 3, Summer 2018

Journal Of Industrial Engineering International
Volume:14 Issue: 3, Summer 2018

  • تاریخ انتشار: 1397/08/15
  • تعداد عناوین: 15
|
  • Reliability analysis of a robotic system using hybridized technique
    Naveen Kumar *, Komal Komal, J. S. Lather Page 1

    In this manuscript, the reliability of a robotic system has been analyzed using the available data (containing vagueness, uncertainty, etc). Quantification of involved uncertainties is done through data fuzzification using triangular fuzzy numbers with known spreads as suggested by system experts. With fuzzified data, if the existing fuzzy lambda–tau (FLT) technique is employed, then the computed reliability parameters have wide range of predictions. Therefore, decision-maker cannot suggest any specific and influential managerial strategy to prevent unexpected failures and consequently to improve complex system performance. To overcome this problem, the present study utilizes a hybridized technique. With this technique, fuzzy set theory is utilized to quantify uncertainties, fault tree is utilized for the system modeling, lambda–tau method is utilized to formulate mathematical expressions for failure/repair rates of the system, and genetic algorithm is utilized to solve established nonlinear programming problem. Different reliability parameters of a robotic system are computed and the results are compared with the existing technique. The components of the robotic system follow exponential distribution, i.e., constant. Sensitivity analysis is also performed and impact on system mean time between failures (MTBF) is addressed by varying other reliability parameters. Based on analysis some influential suggestions are given to improve the system performance.

    Keywords: Reliability analysis, Robotic system, Nonlinear programming, Fuzzy lambda- tau technique
  • Inyeneobong Ekoi Edem, Sunday Ayoola Oke *, Kazeem Adekunle Adebiyi Pages 455-489

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey–fuzzy–Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey–fuzzy–Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

    Keywords: Forecasting, Manufacturing, Accidents, Fuzzy-grey, Markov, Pattern recognition
  • Mohammad Zolghadr, Seyed Armin Akhavan Niaki, S. T. A. Niaki * Pages 491-500

    The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are considered in a stepwise regression to identify significant variables. The president’s approval rate is identified as the most significant variable, based on which eight other variables are identified and considered in the model development. Preprocessing methods are applied to prepare the data for the learning algorithms. The proposed procedure significantly increases the accuracy of the model by 50%. The learning algorithms (ANN and SVR) proved to be superior to linear regression based on each method’s calculated performance measures. The SVR model is identified as the most accurate model among the other models as this model successfully predicted the outcome of the election in the last three elections (2004, 2008, and 2012). The proposed approach significantly increases the accuracy of the forecast.

    Keywords: Presidential election, Forecasting, Artificial neural network, Support vector regression, Linear regression
  • Wilhelm Ro¨Dder, Andreas Kleine, Andreas Dellnitz * Pages 501-510

    DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.

    Keywords: Data envelopment analysis, Returns to scale, Efficiency, Upsizing -downsizing, mpss
  • Vikash Gupta, Rahul Jain *, M. L. Meena, G. S. Dangayach Pages 511-520

    Globalization, advancement of technologies, and increment in the demand of the customer change the way of doing business in the companies. To overcome these barriers, the six-sigma define–measure–analyze–improve–control (DMAIC) method is most popular and useful. This method helps to trim down the wastes and generating the potential ways of improvement in the process as well as service industries. In the current research, the DMAIC method was used for decreasing the process variations of bead splice causing wastage of material. This six-sigma DMAIC research was initiated by problem identification through voice of customer in the define step. The subsequent step constitutes of gathering the specification data of existing tire bead. This step was followed by the analysis and improvement steps, where the six-sigma quality tools such as cause–effect diagram, statistical process control, and substantial analysis of existing system were implemented for root cause identification and reduction in process variation. The process control charts were used for systematic observation and control the process. Utilizing DMAIC methodology, the standard deviation was decreased from 2.17 to 1.69. The process capability index (C p) value was enhanced from 1.65 to 2.95 and the process performance capability index (C pk) value was enhanced from 0.94 to 2.66. A DMAIC methodology was established that can play a key role for reducing defects in the tire-manufacturing process in India.

    Keywords: Developing country, Process capability, Six sigma, Tire bead
  • O. A. Makinde *, K. Mpofu, B. I. Ramatsetse, M. K. Adeyeri, S. P. Ayodeji Pages 521-535

    The reconfigurable vibrating screen (RVS) machine is an innovative beneficiation machine designed for screening different mineral particles of varying sizes and volumes required by the customers’ through the geometric transformation of its screen structure. The successful RVS machine upkeep requires its continuous, availability, reliability and maintainability. The RVS machine downtime, which could erupt from its breakdown and repair, must also be reduced to the barest minimum. This means, there is a need to design and develop a maintenance system model that could be used to effectively maintain the RVS machine when utilized in surface and underground mines. In view of this, this paper aims to develop a maintenance system model that could be used to effectively maintain the RVS machine when used in surface and underground mines. The maintenance system model unfolds the predictive (i.e. diagnosis and prognosis) algorithms, the e-maintenance strategic tools as well as the dynamic maintenance strategic algorithms required to effectively maintain the RVS machine. Four different case studies were presented in this paper to illustrate the applicability of this maintenance system model in maintaining and managing the RVS machine when utilized in the mining industries.

    Keywords: Reconfigurable vibrating screen, Reliability, Dynamic maintenance, Maintainability, LABVIEW
  • F. Forouzanfar, R. Tavakkoli-Moghaddam *, M. Bashiri, A. Baboli, S. M . Hadji Molana Pages 537-553

    This paper studies a location–routing–inventory problem in a multi-period closed-loop supply chain with multiple suppliers, producers, distribution centers, customers, collection centers, recovery, and recycling centers. In this supply chain, centers are multiple levels, a price increase factor is considered for operational costs at centers, inventory and shortage (including lost sales and backlog) are allowed at production centers, arrival time of vehicles of each plant to its dedicated distribution centers and also departure from them are considered, in such a way that the sum of system costs and the sum of maximum time at each level should be minimized. The aforementioned problem is formulated in the form of a bi-objective nonlinear integer programming model. Due to the NP-hard nature of the problem, two meta-heuristics, namely, non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO), are used in large sizes. In addition, a Taguchi method is used to set the parameters of these algorithms to enhance their performance. To evaluate the efficiency of the proposed algorithms, the results for small-sized problems are compared with the results of the ε-constraint method. Finally, four measuring metrics, namely, the number of Pareto solutions, mean ideal distance, spacing metric, and quality metric, are used to compare NSGA-II and MOPSO.

    Keywords: Location- routing- inventory, Multi-period, Closed-loop supply chain, Lost sales, Backlog
  • Raviteja Buddala *, Siba Sankar Mahapatra Pages 555-570

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching–learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

    Keywords: Flexible flow shop, JAYA algorithm, Makespan, Meta-heuristics, Teaching- learning-based optimization
  • Ali Asghar Tofighian, Hamid Moezzi, Morteza Khakzar Barfuei, Mahmood Shafiee * Pages 571-584

    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.

    Keywords: Portfolio selection, Risk analysis, Investment, Genetic algorithm, Particle swarm optimization, Project interdependency
  • Armacheska Mesa *, Kris Castromayor, Cinmayii Garillos-Manliguez, Vicente Calag Pages 585-592

    Facility location problem (FLP) is a mathematical way to optimally locate facilities within a set of candidates to satisfy the requirements of a given set of clients. This study addressed the uncapacitated FLP as it assures that the capacity of every selected facility is finite. Thus, even if the demand is not known, which often is the case, in reality, organizations may still be able to take strategic decisions such as locating the facilities. There are different approaches relevant to the uncapacitated FLP. Here, the cuckoo search via Lévy flight (CS-LF) was used to solve the problem. Though hybrid methods produce better results, this study employed CS-LF to determine first its potential in finding solutions for the problem, particularly when applied to a real-world problem. The method was applied to the data set obtained from a department store in Davao City, Philippines. Results showed that applying CS-LF yielded better facility locations compared to particle swarm optimization and other existing algorithms. Although these results showed that CS-LF is a promising method to solve this particular problem, further studies on other FLP are recommended to establish a strong foundation of the capability of CS-LF in solving FLP.

    Keywords: FLP, CS- FLP, Optimization problem, Metaheuristics, Hybrid, Algorithms
  • Sasan Torabzadeh Khorasani *, Maryam Almasifard Pages 593-602

    This paper presents a dual-objective facility programming model for a green supply chain network. The main objectives of the presented model are minimizing overall expenditure and negative environmental impacts of the supply chain. This study contributes to the existing literature by incorporating uncertainty in customer demand, suppliers, production, and casting capacity. An industrial case study is also analyzed to reveal the feasibility of the proposed model and its application. A fuzzy approach which is known as TH is used to solve the suggested dual-objective model. TH approach is integration of a max–min method (LH) and modified version of Werners’ approach (MW). The outcome of this study reveals that the presented model can support green supply chain network in different levels of uncertainty. In presented model, cost and negative environmental impacts derived from the supply chain network will increase of higher levels of uncertainty.

    Keywords: Green supply network design, Environmental -effects, Facility programming, Aggregation function
  • M. Palanivel, S. Priyan *, P. Mala Pages 603-612

    In the current global market, organizations use many promotional tools to increase their sales. One such tool is sales teams’ initiatives or promotional policies, i.e., free gifts, discounts, packaging, etc. This phenomenon motivates the retailer/or buyer to order a large inventory lot so as to take full benefit of promotional policies. In view of this the present paper considers a two-warehouse (owned and rented) inventory problem for a non-instantaneous deteriorating item with inflation and time value of money over a finite planning horizon. Here, demand depends on the sales team’s initiatives and shortages are partially backlogged at a rate dependent on the duration of waiting time up to the arrival of next lot. We design an algorithm to obtain the optimal replenishment strategies. Numerical analysis is also given to show the applicability of the proposed model in real-world two-warehouse inventory problems.

    Keywords: Promotional effort, Two -warehouse, Non - instantaneous, Finite horizon, Inflation
  • Saeid Jafarzadeh Ghoushchi, Mehran Dodkanloi Milan, Mustafa Jahangoshai Rezaee * Pages 613-625

    Nowadays, with respect to knowledge growth about enterprise sustainability, sustainable supplier selection is considered a vital factor in sustainable supply chain management. On the other hand, usually in real problems, the data are imprecise. One method that is helpful for the evaluation and selection of the sustainable supplier and has the ability to use a variety of data types is data envelopment analysis (DEA). In the present article, first, the supplier efficiency is measured with respect to all economic, social and environmental dimensions using DEA and applying imprecise data. Then, to have a general evaluation of the suppliers, the DEA model is developed using imprecise data based on goal programming (GP). Integrating the set of criteria changes the new model into a coherent framework for sustainable supplier selection. Moreover, employing this model in a multilateral sustainable supplier selection can be an incentive for the suppliers to move towards environmental, social and economic activities. Improving environmental, economic and social performance will mean improving the supply chain performance. Finally, the application of the proposed approach is presented with a real dataset.

    Keywords: Sustainable supplier selection, Environmental, Economic, social performance, Imprecise data envelopment analysis, Goal programming
  • Sayyed Mahdi Sadat Khorasgani, Mahdi Ghaffari * Pages 627-636

    The cell formation (CF) is one of the most important steps in the design of a cellular manufacturing system (CMS), which it includes machines’ grouping in cells and part grouping as separate families, so that the costs are minimized. The various aspects of the problem should be considered in a CF. The machine reliability and the tool assigned to them are the most important problems which have to be modeled correctly. Another important aspect in CMS is material handling costs that they consist of inter-cell and intra-cell movement costs. Moreover, setup and tool replacement costs can be effective in CF decision making. It is obvious that CF cannot be completed without considering the number of demand. With considering of all of the above aspects, an extended linear integer programming is represented for solving the cell formation problem (CFP) in this study. The objective is to minimize the sum of inter-cell movement, intra-cell movement, tool replacement, machine breakdown, and setup costs. In the other terms, for states that cost of movement is higher than tool-changing cost, although a part can have the inter- and/or intra-cell movements, the model tries to find a solution which part is allocated to one cell and with changing the tools, processes of that part is completed. In addition, to validate the model and show its efficiency and performance, several examples are solved by branch and bound (B&B) method.

    Keywords: Cell formation problem, Material handling -costs, Alternative processing routes, Tool assignment, Machine reliability, Branch, bound
  • Mohammad Miftaur Rahman Khan Khadem *, Sujan Piya, Ahm Shamsuzzoha Pages 637-654

    The purpose of this research was to study the recognition, application and quantification of the risks associated in managing projects. In this research, the management of risks in an oil and gas project is studied and implemented within a case company in Oman. In this study, at first, the qualitative data related to risks in the project were identified through field visits and extensive interviews. These data were then translated into numerical values based on the expert’s opinion. Further, the numerical data were used as an input to Monte Carlo simulation. RiskyProject Professional™ software was used to simulate the system based on the identified risks. The simulation result predicted a delay of about 2 years as a worse case with no chance of meeting the project’s on stream date. Also, it has predicted 8% chance of exceeding the total estimated budget. The result of numerical analysis from the proposed model is validated by comparing it with the result of qualitative analysis, which was obtained through discussion with various project managers of company.

    Keywords: Risk analysis, Quantitative analysis, Project management, Monte Carlo simulation