فهرست مطالب

International Journal of Molecular and Cellular Medicine
Volume:10 Issue: 37, Winter 2021

  • تاریخ انتشار: 1400/03/04
  • تعداد عناوین: 7
|
  • Mahdi Noureddini, Saeid Bagheri Mohammadi* Pages 1-10

    The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intrinsic and extrinsic factors. The integration of maturated cells into the circuitry of the adult hippocampus emphasizes the importance of adult hippocampal neurogenesis in learning and memory. There is a large body of evidence demonstrating that alteration in the neurogenesis process in the adult hippocampus results in an early event in the course of Alzheimer disease (AD). In AD condition, the number and maturation of neurons declines progressively in the hippocampus. Innovative therapies are required to modulate brain homeostasis. Mesenchymal stem cells (MSCs) hold an immense potential to regulate the neurogenesis process, and are currently tested in some brain-related disorders, such as AD. Therefore, the aim of this review is to discuss the use of MSCs to regulate endogenous adult neurogenesis and their significant impact on future strategies for the treatment of AD.

    Keywords: Alzheimer's disease, cell therapy, hippocampus, neurogenesis, neural stem cells
  • Amir Safi, Esfandiar Heidarian*, Reza Ahmadi Pages 11-22

    Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer activities. This study aimed to evaluate the cytotoxic and modulatory effects of combined docetaxel and quercetin on the MDA-MB-231 human breast cancer cell line. The cell viability was assessed by MTT assay. The induction of apoptosis was examined using flow cytometry. The role of p53 in the apoptotic process was evaluated via qRT-PCR. The levels of BAX, BCL2, ERK1/2, AKT, and STAT3 proteins were measured by Western blot analysis. The results showed that the single-agent treatment with docetaxel or quercetin leads to a decrease in the viability of the MDA-MB-231 cells at 48 h. Furthermore, the combination of docetaxel (7 nM) and quercetin (95 μM) displayed the greatest synergistic effects with a combination index value of 0.76 accompanied by up regulation of p53 and a significant increase in BAX level, as well as decreases in the levels of BCL2, pERK1/2, AKT, and STAT3 proteins (P < 0.05). The concomitant use of docetaxel and quercetin leads to the cell growth inhibition associated with the induction of apoptosis and inhibition of cell survival. Therefore, this study provides a promising therapeutic approach to enhance the efficacy of docetaxel in a less-toxic manner.

    Keywords: Apoptosis, breast neoplasms, cell survival, combined modality therapy, docetaxel, quercetin
  • Chiman Mohammadi, Ali Mahdavinezhad, Massoud Saidijam, Fatemeh Bahreini, Abdolazim Sedighi Pashaki, MohammadHadi Gholami, Rezvan Najafi* Pages 23-33

    Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to ‎normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial- mesenchymal transition (EMT) related genes (vimentin, N‐cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β‐catenin signaling pathway (β‐catenin) were evaluated. DCLK1siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P < 0.01). Colony formation assay showed a significantly reduced cell survival in the DCLK1 siRNA transfected group in comparison with the control group following exposure to 4 and 6 Gy doses of irradiation (P < 0.01). Moreover, the expression of cancer stem cells markers (P < 0.01), EMT related genes (P < 0.01), and DNA repair proteins including pATM (P < 0.01) and γH2AX (P < 0.001) were significantly decreased in the transfected cells in comparison with the nontransfected group after radiation. Finally, the cell apoptosis rate (P < 0.01) and the number of cells in the G0/G1 phase in the silencing DCLK1 group was increased (P < 0.01). These findings suggest that DCLK1 can be considered a promising therapeutic target for the treatment of radioresistant human CRC.

    Keywords: DCLK1, ionizing radiation, colorectal cancer, radiosensitivity
  • Abdul Fattah Salah Fararjeh*, Ali Al Khader, Ezidin Kaddumi, Maher Obeidat, O'la AL Fawares Pages 34-44

    StAR related lipid transfer domain containing 3 (STARD3) gene has been reported to be co-amplified with human epidermal growth factor receptor 2 (HER2) in breast carcinoma. STARD3 is necessary for cholesterol transfer and metabolism in tumor cells. The possible role played by STARD3 as a diagnostic and prognostic biomarker was investigated in breast cancer (BC). Data mining was performed using several bioinformatics websites to investigate the correlation of STARD3 with BC and its molecular subtypes, and conventional PCR was used to detect the STARD3 mRNA levels in a panel of BC cell lines. STARD3 was overexpressed in BC more than the other types of cancer. The results also showed that STARD3 expression was significantly associated with HER2+ BC tumors and BC cell lines, and low STARD3 mRNA and protein expression levels were observed in estrogen receptor-positive (ER+) and triple-negative BC (TNBC) patients. Moreover, high STARD3 expression levels predicted worse overall survival (OS), relapse-free survival (RFS) and disease metastasis-free survival (DMFS) in BC, and HER2+ BC. Notably, low expression of STARD3 was associated with poor OS in ER+ BC. Our findings suggest that STARD3 may have strong diagnostic and prognostic value for HER2+ breast carcinoma.

    Keywords: Breast neoplasm, STARD3, HER2, prognosis, computational biology
  • Hussein Sabit, Huseyin Tombuloglu*, Emre Cevik, Shaimaa Abdel Ghany, Engy El Zawahri, Amr El Sawy, Sevim Isik, Ebtesam Alsuhaimi Pages 45-55

    Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial cancer occurring in the oral cavity, where it accounts for nearly 90% of all oral cavity neoplasms. The c-MYC transcription factor plays an important role in the control of programmed cell death, normal-to-malignant cellular transformation, and progression of the cell cycle. However, the role of c-MYC in controlling the proliferation of OSCC cells is not well known. In this study, c-MYC gene was silenced in OSCC cells (ORL-136T), and molecular and cellular responses were screened. To identify the pathway through which cell death occurred, cytotoxicity, colony formation, western blotting, caspase-3, and RT-qPCR analyzes were performed. Results indicated that knockdown of c-MYC has resulted in a significant decrease in the cell viability and c-MYC protein synthesis. Furthermore, caspase-3 was shown to be upregulated leading to apoptosis via the intrinsic pathway. In response to c-MYC knockdown, eight cell proliferation-associated genes showed variable expression profiles: c-MYC (-21.2), p21 (-2.5), CCNA1(1.8), BCL2 (-1.4), p53(-3.7), BAX(1.1), and CYCS (19.3). p27 expression was dramatically decreased in c-MYC-silenced cells in comparison with control, and this might indicate that the relative absence of c-MYC triggered intrinsic apoptosis in OSCC cells via p27 and CYCS.

    Keywords: Oral squamous cell carcinoma, siRNA, c-MYC, knockdown, p27, CYCS
  • Maha Mohamed Farid Aql, Seham Abd El Ghafour Bahget, Naglaa Kholoussi, Ghada Mohamed El Hossiny Abdel Salam, Haiam Abdel Raouf*, Maha Mohamed Eid, Rania El Bialy Esmail Pages 56-67

    Telomeres are nucleoprotein complexes present at the ends of chromosome to maintain its integrity. Telomere length is maintained by an enzyme called "telomerase". Thus, telomerase activity and telomere length are crucial for the initiation of cancer and tumors survival. Also, oxidative stress will cause DNA, protein, and/or lipid damage, which end with changes in chromosome instability, genetic mutation, and may affect cell growth and lead to cancer. Some genetic diseases such as chromosomal instability syndrome, overgrowth syndrome, and neurofibromatosis make the patients at higher risk for developing different types of cancers. Therefore, we aimed to estimate telomerase activity and oxidative stress in these patients. Blood samples were collected from 31 patients (10 with neurofibromatosis, 11 with chromosomal breakage, and 10 with overgrowth syndrome) and 12 healthy subjects. Blood hTERT mRNA was detected by real time quantitative reverse-transcription PCR (RT-qPCR). All patients were subjected to chromosomal examination and chromosome breakage study using diepoxybutane method.  Moreover, serum glutathione (GSH), glutathione-s-transferase (GST) activity and nitric oxide (NO) levels were measured among the control and patients groups. Receiver operating characteristic (ROC) curve was drawn to evaluate the efficiency of telomerase activity as a biomarker for the prediction of cancer occurrence. The relative telomerase activity in neurofibromatosis patients was significantly higher than controls (P = 0.014), while it was non-significantly higher in chromosomal breakage and overgrowth patients (P = 0.424 and 0.129, respectively). NO levels in neurofibromatosis, chromosomal breakage and overgrowth patients significantly increased with respect to control (P = 0.021, 0.002, 0.050, respectively). GSH levels were non-significantly lower in neurofibromatosis and chromosomal breakage patients in comparison with the control group, while it remained unchanged in overgrowth patients. The GST activity was significantly upregulated in  neurofibromatosis, chromosomal breakage and overgrowth groups in comparison with the control group (P = 0.001, 0.009, and 0.025, respectively). Chromosomal examination revealed normal karyotype in all four chromosomal breakage patients with positive diepoxybutane test. The results of the present study revealed altered telomerase activity and oxidative stress in the studied genetic disorders. More research studies with a larger number of patients are required to confirm whether this alteration is related to cancer occurrence risk or not.

    Keywords: Telomerase, genetic disorder, neurofibromatosis, chromosomal breakage, overgrowth, oxidative stress
  • Hadi Rajabi, Somayeh Aslani, Reza Rahbarghazi* Pages 68-74

    Mesenchymal stem cells have the fundamental ability to differentiate into multiple cells such as osteoblasts, neural cells, and insulin-producing cells. MicroRNAs (miRNAs) are single-strand and small non-coding RNAs involved in stem cells orientation into mature cells. There is no comprehensive data about the dynamic of distinct miRNAs during the differentiation of mesenchymal cells from adipose tissue into insulin-producing cells. In this study, we first differentiated adipose-derived mesenchymal stem cells into insulin-producing cells by a three-stepwise protocol. Differentiation capacity was confirmed by the dithizone staining method and hormone (insulin and C peptide) release analysis via electrochemiluminescence technique. In the final phase, the expression of hsa-miR-101a and hsa-miR-107 and two pancreatic genes, sex-determining region Y-box (SOX) 6 and neuronal differentiation 1 (NeuroD1) were examined during the differentiation procedure on days 0, 7, 14, 21, and 28 after induction, by using real-time PCR assay. The level of C-peptide and insulin were also measured at the end of the experiment. Dithizone staining showed trans-differentiation of adipose-derived mesenchymal stem cells into pancreatic β cells evidenced with red-to-brown appearance compared to the control group, indicating the potency to insulin production. These features were at maximum levels 28 days after cell differentiation. Real-time PCR revealed the increase of NeuroD1 and reduction of SOX6 during differentiation of stem cells toward insulin-producing cells (P < 0.05). Both miR-101a and miR-107  showed prominent expression at day 28 (P < 0.05). Changes in the expression of miR-101a and miR-107coincided with alteration of NeuroD1 and SOX6 that could affect mesenchymal stem cells commitment toward insulin-like beta cells.

    Keywords: Mesenchymal stem cells, microRNAs, differentiation, insulin-producing cells