فهرست مطالب

Cell Journal (Yakhteh)
Volume:24 Issue: 5, May 2022

  • تاریخ انتشار: 1401/04/29
  • تعداد عناوین: 9
|
  • Samieh Asadian, Abbas Piryaei, Zahra Farzaneh, Bagher Aziz Kalantari, Mehdi Azad, Sahar Moghbeli Nejad, MohamadReza Davarpanah, Morteza Mohamadi, Anastasia Shpichka, Nematolah Gheibi *, Peter Timashev, Massoud Vosough Pages 215-221
    Objectives

    Epigenetic alterations, including any change in DNA methylation pattern, could be the missing link of understanding radiation-induced genomic instability. Dapper, Dishevelled-associated antagonist of β-catenin homolog 2 (DACT2) is a tumor suppressor gene regulating Wnt/β-catenin. In hepatocellular carcinoma (HCC), DACT2 is hypermethylated, while methylation status of its promoter regulates the corresponding expression. Radionuclides have been used to reduce proliferation and induce apoptosis in cancerous cells. Epigenetic impact of radionuclides as therapeutic agents for treatment of HCC is still unknown. The aim of this study was to evaluate epigenetic impact of 188Rhenium perrhenate (188ReO4) on HCC cells.

    Material and Methods

    In this in vitro experimental study, HepG2 and Huh7 cells were treated with 188ReO4, receiving 55 and 73 Mega Becquerel (MBq) exposures, respectively. For cell viability measurement, live/dead staining was carried out 18, 24, and 48 hours post-exposure. mRNA expression level of β-Catenin, Wnt1, DNMT1, DACT2 and WIF-1 genes were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Then, possible regulatory impact of DACT2 upregulation was investigated through evaluating methylation-specific PCR (MS-PCR).

    Results

    Results showed that viability of both cells was reduced after treatment with 188ReO4 at three time points postexposure compared to the control groups. The qRT-PCR results showed that DACT2 mRNA level was significantly increased at 24, and 48 hours post-exposure in HepG2 cells compared to the control group, while, no significant change was observed in Huh7 cells. Methylation pattern of DACT2 promoter remained unchanged in HepG2 and Huh7 cells.

    Conclusion

    Treatment with 188ReO4 reduced viability of HepG2 and Huh7 cells. Although DACT2 expression was increased after 188ReO4 exposure in HepG2 cells, methylation pattern of its promoter remained unchanged. This study assessed impacts of the 188 ReO4 β-irradiation on expression and induction of DACT2 epigenetic aberrations as well as the correlation of this agent with viability of cells.

    Keywords: DNA methylation, Epigenetics, Hepatocellular Carcinoma, Radionuclide
  • Yanbo Zhang, Xuefeng Wang, Peng Wang, Xingle Zhang, Shangzhi Han, Feng Huo * Pages 222-229
    Objective
    A lot of lncRNAs are implicated in oral squamous cell carcinoma (OSCC) progression. The study aimed at investigating lncRNA DS cell adhesion molecule antisense RNA 1 (DSCAM-AS1)’s functional role and molecular mechanism in OSCC.
    Materials and Methods
    In this experimental study, a total of 46 pairs of OSCC samples and para-cancerous tissues were collected during surgery. In OSCC tissues and cell lines, quantitative real time polymerase chain reaction (qRTPCR) was performed for detecting DSCAM-AS1 and microRNA-138-5p (miR-138-5p) expression levels. Western blot was conducted to examine the enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) expression level. Then, DSCAM-AS1 was knocked down with siRNA in OSCC cells and MTT and EdU assays were conducted to evaluate OSCC cell proliferation. Transwell assay was utilized for detecting OSCC cell migration and invasion capacities. Besides, the relationships among DSCAM-AS1, miR-138-5p, and EZH2 were explored through RNA immunoprecipitation, dual-luciferase reporter assay, qRT-PCR, and Western blot.
    Results
    DSCAM-AS1 expression was remarkably increased in OSCC tissues and cell lines, and DSCAM-AS1 knockdown could significantly restrain OSCC cell proliferation, migration, and invasion. MiR-138-5p was identified as a target of DSCAM-AS1, and its inhibitor could reverse the suppressive effects of DSCAM-AS1 knockdown on OSCC progression. EZH2 was verified as a target of miR-138-5p, and EZH2 knockdown could counteract the promotional impact of miR-138-5p inhibitor on OSCC progression. Additionally, DSCAM-AS1, as a ceRNA, could regulate EZH2 expression via miR-138-5p.
    Conclusion
    DSCAM-AS1 can play a tumor-promoting role in OSCC via miR-138-5p/EZH2 axis.
    Keywords: DSCAM-AS1, Oral Squamous Cell Carcinoma, Proliferation
  • Guangbin Wu, Peilong Sun, Chunzhi Qin * Pages 230-238
    Objective
    Growing evidences have exposed the important roles of long noncoding RNAs (lncRNAs) in the triple negative breast cancer (TNBC) inhibition. The function of glucuronidase beta pseudogene 11 (GUSBP11) in the TNBC occurrence remains obscure. To detect the function of GUSBP11 in TNBC progression and explore its downstream molecular mechanism.
    Materials and Methods
    In this experimental study, using quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR), we measured the GUSBP11 expression in the TNBC cell lines. Gain-of-function assays, including colony formation, flow cytometry, and western blot were used to identify the probable effects of GUSBP11 overexpression on the malignant behaviors of TNBC cell lines. Moreover, mechanism assays, including RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays were taken to measure the possible mechanism of GUSBP11 in the TNBC cell lines.
    Results
    GUSBP11 expressed at a low RNA level in the TNBC cell lines. Overexpression of GUSBP11 RNA expression inhibited the proliferation, migration, epithelial-to-mesenchymal transition (EMT) and stemness while elevated the apoptosis of the TNBC cell lines. GUSBP11 positively regulated the expression of sphingolipid transporter 2 (SPNS2) via acting as a competing endogenous RNA (ceRNA) of miR-579-3p, thereby suppressing the development of TNBC cell lines.
    Conclusion
    GUSBP11 impedes TNBC progression via modulating the miR-579-3p/SPNS2 axis.
    Keywords: GUSBP11, miR-579-3p, SPNS2, Triple-negative breast cancer
  • Min-Ke Shi, Yu-Long Xuan, Xiao-Feng He * Pages 239-244
    Objective
    Four and a half Lin-11, Isl-1, Mac-3 (LIM) protein 1 (FHL1) is one of the FHL protein family, which is regarded as a tumor suppressor in the multiple malignant tumors. In this study, we aimed to explore the regulatory effects and mechanisms of FHL1 on lung cancer cell invasion.
    Materials and Methods
    In this experimental study, bioinformatics analysis of FHL1 transcripts in human lungadenocarcinomas of TCGA database was performed. Quantitative real-time polymerase chain reaction (PCR) was performed to detect FHL1 mRNA expression in 15 paired human lung cancer tissues and their adjacent normal lung tissues, or lung cancer cell lines (A549 and H1299) in comparison with human bronchial epithelial cell line (Beas- 2B). Moreover, western blot was used to analyze FHL1 and rho GDP-dissociation inhibitor beta (RhoGDIβ) protein expression in the indicated cell lines. Also, transwell assays were employed to measure the migrated, and invaded of indicated cell lines.
    Results
    FHL1 transcripts were downregulated in the human lung adenocarcinoma. The impaired FHL1 transcripts were positively correlated with advanced tumor node metastasis (TNM) stage. Moreover, as compared to the adjacent normal lung tissues, FHL1 mRNA was low expressed in 15 paired human lung cancer tissues than their adjacent normal lung tissues. Besides, FHL1 mRNA and protein expression were also reduced in H1299 and A549 cell lines in comparison with Beas-2B cell line. Overexpressed FHL1 protein inhibited the invasive ability of H1299 and A549 cell lines. Mechanically, FHL1 protein overexpression increased the RhoGDIβ protein and mRNA abundance, while knockdown of RhoGDIβ protein, completely restored the invasion ability of A549 (Flag-FHL1) cell line.
    Conclusion
    Our findings indicated that as a key FHL1 downstream regulator, RhoGDIβ is in charge of FHL1 inhibiting lung cancer cell invasion abilities, providing a critical insight into understanding the role of FHL1 for lung cancer development.
    Keywords: FHL1, invasion, Gene expression, Lung cancer, rho GDP-Dissociation Inhibitor Beta
  • Jiacheng Sun, Lei Wang, Xinhai Zhu *, Molei Shen Pages 245-254
    Objective
    Circular RNAs (circRNAs) are identified as key modulators in cancer biology. Nonetheless, the role of circ_0006427 in non-small cell lung cancer (NSCLC) and its modulatory mechanism are undefined. This study aimed to investigate the potential function and mechanism of circ_0006427 in NSCLC.
    Materials and Methods
    In this experimental study, circ_0006427, miR-346 and vestigial like family member 4 (VGLL4) mRNA expressions were analyzed in NSCLC tissues and cells, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Multiplication, migration and invasion of NSCLC cells were examined using the CCK-8 method and Transwell experiment, respectively. Dual-luciferase reporter gene experiments were conducted to identify the paring relationship between circ_0006427 and miR-346. Western blot was employed to determine expressions of VGLL4 and epithelial-mesenchymal transition (EMT) markers on protein levels. Immuno histochemistry (IHC) method was adopted to assess VGLL4 protein expression in NSCLC tissues.
    Results
    Circ_0006427 expression was down-regulated in NSCLC tissues and cells, and circ_0006427 suppressed multiplication, migration, invasion and EMT of NSCLC cells. miR-346 expression was upregulated in NSCLC tissues and cells, and miR-346 worked as a target of circ_0006427. VGLL4 was down-regulated in NSCLC tissues and cells, and knockdown of VGLL4 accelerated multiplication, migration, invasion and EMT of NSCLC cells. Circ_0006427 enhanced VGLL4 expression by competitively binding with miR-346.
    Conclusion
    Circ_0006427/miR-346/VGLL4 axis regulated NSCLC progression.
    Keywords: circRNA, MicroRNA, non-small cell lung cancer, Vestigial-Like Family Member 4
  • Jie Xu, Xia Shen, Daozhong Sun, Yanjie Zhu * Pages 255-260
    Objective
    Cordycepin, also known as 3ˊ-deoxyadenosine, is the main bioactive ingredient of Cordyceps militaris and possesses various pharmacological effects. This study was performed to investigate the role of cordycepin in regulating the biological behaviors of colon cancer cells and the potential mechanism behind it.
    Materials and Methods
    In this experimental study, after treatment of colon cancer cells with different concentrations of cordycepin, inhibition of proliferation was detected by the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Colon cancer cell migration and invasion abilities were analyzed by wound healing and Transwell assays. Flow cytometry was performed to detect cell apoptosis. A lung metastasis model in nude mice was utilized to examine the effect of cordycepin on the metastasis of colon cancer cells in vivo. Western blot was used to quantify GSK3β, β-catenin and cyclin D1 expression levels.
    Results
    Cordycepin inhibited colon cancer cell proliferation, migration and invasion, induced apoptosis in vitro, and inhibited lung metastasis of colon cancer cells in vivo. GSK-3β inhibitor (CHIR99021) treatment abolished the effects of cordycepin on cell viability, migration, invasion and apoptosis. Additionally, cordycepin promoted the expressions of GSK3β, and inhibited β-catenin and cyclin D1 in colon cancer cells, while co-treatment with CHIR99021 reversed the above effects.
    Conclusion
    Cordycepin suppresses the malignant phenotypes of colon cancer through the GSK3β/β-catenin/cyclin D1 signaling pathway.
    Keywords: Colon cancer, Cordycepin, Cyclin D1, GSK3β, β-Catenin
  • Amirhossein Izadpanah, Nowruz Delirezh *, Rahim Mahmodlou Pages 261-266
    Objective
    The induction of immunity against cancer stem cells (CSCs) can boost the efficiency of cancer vaccines. Heat shock proteins (HSPs) are required for the successful activation of anti-tumor immune responses. Glycoprotein 96 (gp96) is a well-known HSP that promotes the cross-presentation of tumor antigens. The aim of the present study was to optimize the temperature for induction of gp96 in grade 3 breast cancer spheres.
    Materials and Methods
    In the experimental study, CSCs were enriched from breast tumor tissue samples and cultured in DMEM-F12 with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), B27, and bovine serum albumin (BSA) for 22 days. The expression level of CD24 and CD44 as CSC markers was measured by flow cytometry in secondary mammospheres, and the expression of NANOG, SOX2, and OCT4 genes in CSCs was also analyzed using the real-time polymerase chain reaction (PCR). To find the optimal temperature regulation of gp96, the mammosphere was incubated at different temperatures for 1 hour, and gp96 expression was measured using the western blotting assay.
    Results
    Primary mammospheres were obtained after seven days of culture, and secondary spheres formed 22 days after passage. Flow cytometry analysis showed that cells with CD24- CD44+ phenotype were enriched in the culture period (from 2.6% on day 1 to 32.6% on day 22). Real-time PCR indicated that OCT4, NANOG, and SOX2 expression in mammospheres were increased by 3.8 ± 0.6, 17.8 ± 0.6, and 7.7 ± 0.8 fold respectively in comparison to the MCF-7 cell line. Western blot analysis showed that gp96 production was significantly upregulated when mammospheres were incubated at both 42°C and 43°C in comparison to the control group.
    Conclusion
    Altogether, we found that heat-induced upregulated expression of gp96 in CSCs enriched mammospheres from breast tumor tissue might be used as a complementary procedure to generate more immunogenic antigens in immunotherapy settings.
    Keywords: Breast cancer, Cancer Stem Cells, Cellular Spheroid, Heat shock proteins
  • Khatereh Fazelian-Dehkordi, Sayed Fakhroddin Mesbah Ardekani, Tahereh Talaei-Khozani * Pages 267-276
    Objective
    Decellularized greater omentum (GOM) is a good extracellular matrix (ECM) source for regenerative medicine applications. The aim of the current study was to compare the efficiency of three protocols for sheep GOM decellularization based on sufficient DNA depletion and ECM content retention for tissue engineering application.
    Materials and Methods
    In this experimental study, in the first protocol, low concentrations of sodium dodecyl sulfate (SDS 1%), hexane, acetone, ethylenediaminetetraacetic acid (EDTA), and ethanol were used. In the second one, a high concentration of SDS (4%) and ethanol, and in the last one sodium lauryl ether sulfate (SLES 1%) were used to decellularize the GOM. To evaluate the quality of scaffold prepared with various protocols, histochemical staining, DNA, and glycosaminoglycan (GAGs) quantification, scanning electron microscopy (SEM), Raman confocal microscopy, Bradford assay, and ELISA were performed.
    Results
    A comparison of DNA content showed that SDS-based protocols omitted DNA more efficiently than the SLESbased protocol. Histochemical staining showed that all protocols preserved the neutral carbohydrates, collagen, and elastic fibers; however, the SLES-based protocol removed the lipid droplets better than the SDS-based protocols. Although SEM images showed that all protocols preserved the ECM architecture, Raman microscopy, GAGs quantification, total protein, and vascular endothelial growth factor (VEGF) assessments revealed that SDS 1% preserved ECM more efficiently than the others.
    Conclusion
    The SDS 1% can be considered a superior protocol for decellularizing GOM in tissue engineering applications.
    Keywords: Decellularization, Extracellular matrix, Greater Omentum, Scaffold, Tissue engineering
  • Zahra Amirkhani, Mansoureh Movahedin *, Nafiseh Baheiraei, Ali Ghiaseddin Pages 277-284
    Objective
    It was in the early 20th century when the quest for in vitro spermatogenesis started. In vitro spermatogenesis is critical for male cancer patients undergoing gonadotoxic treatment. Dynamic culture system creates in vivo-like conditions. In this study, it was intended to evaluate the progression of spermatogenesis after testicular tissue culture in mini-perfusion bioreactor.
    Materials and Methods
    In this experimental study, 12 six-day postpartum neonatal mouse testes were removed and fragmented, placed on an agarose gel in parallel to bioreactor culture, and incubated for 8 weeks. Histological, molecular and immunohistochemical evaluations were carried out after 8 weeks.
    Results
    Histological analysis suggested successful maintenance of spermatogenesis in tissues grown in the bioreactor but not on agarose gel, possibly because the central region did not receive sufficient oxygen and nutrients, which led to necrotic or degenerative changes. Molecular analysis indicated that Plzf, Tekt1 and Tnp1 were expressed and that their expression did not differ significantly between the bioreactor and agarose gel. Immunohistochemical evaluation of testis fragments showed that PLZF, SCP3 and ACRBP proteins were expressed in spermatogonial cells, spermatocytes and spermatozoa. PLZF expression after 8 weeks was significantly lower (P<0.05) in tissues incubated on agarose gel than in the bioreactor, but there was no significant difference between SCP3 and ACRBP expression among the bioreactor and agarose gel culture systems.
    Conclusion
    This three-dimensional (3D) dynamic culture system can provide somewhat similar conditions to the physiological environment of the testis. Our findings suggest that the perfusion bioreactor supports induction of spermatogenesis for generation of haploid cells. Further studies will be needed to address the fertility of the sperm generated in the bioreactor system.
    Keywords: Agarose gel, Mouse, perfusion bioreactor, Spermatogenesis, tissue culture