فهرست مطالب

Biolmpacts
Volume:13 Issue: 3, May 2023

  • تاریخ انتشار: 1402/03/30
  • تعداد عناوین: 8
|
  • Jean J. Latimer* Pages 181-182
  • Hossein Daghagh, Haniyeh Rahbar Kafshboran, Yousef Daneshmandpour, Maryam Nasiri Aghdam, Shahrzad Talebian, Jafar Nouri Nojadeh, Hamid Hamzeiy, Saskia Biskup, Ebrahim Sakhinia* Pages 183-190
    Introduction

     The CSF1R gene encodes the receptor for colony-stimulating factor-1, the macrophage, and monocyte-specific growth factor. Mutations in this gene cause hereditary diffuse leukoencephalopathy with spheroids (HDLS) with autosomal dominant inheritance and BANDDOS (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis) with autosomal recessive inheritance.

    Methods

     Targeted gene sequencing was performed on the genomic DNA samples of the deceased patient and a fetus along with ten healthy members of his family to identify the disease-causing mutation. Bioinformatics tools were used to study the mutation effect on protein function and structure. To predict the effect of the mutation on the protein, various bioinformatics tools were applied.

    Results

     A novel homozygous variant was identified in the gene CSF1R, c.2498C>T; p.T833M in exon 19, in the index patient and the fetus. Furthermore, some family members were heterozygous for this variant, while they had not any symptoms of the disease. In silico analysis indicated this variant has a detrimental effect on CSF1R. It is conserved among humans and other similar species. The variant is located within the functionally essential PTK domain of the receptor. However, no structural damage was introduced by this substitution.

    Conclusion

     In conclusion, regarding the inheritance pattern in the family and clinical manifestations in the index patient, we propose that the mentioned variant in the CSF1R gene may cause BANDDOS.

    Keywords: BANDDOS, CSF1R, Next generation sequencing, Mutation
  • Roghiyeh Pashaei-Asl, Maryam Pashaiasl, Esmaeil Ebrahimie, Maryam Lale Ataei, Maliheh Paknejad* Pages 191-206
    Introduction

     Breast cancer, as the most common malignancy among women, is shown to have a high mortality rate and resistance to chemotherapy. Research has shown the possible inhibitory role of Mesenchymal stem cells in curing cancer. Thus, the present work used human amniotic fluid mesenchymal stem cell-conditioned medium (hAFMSCs-CM) as an apoptotic reagent on the human MCF-7 breast cancer cell line.

    Methods

     Conditioned medium (CM) was prepared from hAFMSCs. After treating MCF-7 cells with CM, a number of analytical procedures (MTT, real-time PCR, western blot, and flow cytometry) were recruited to evaluate the cell viability, Bax and Bcl-2 gene expression, P53 protein expression, and apoptosis, respectively. Human fibroblast cells (Hu02) were used as the negative control. In addition, an integrated approach to meta-analysis was performed.

    Results

     The MCF-7 cells’ viability was decreased significantly after 24 hours (P < 0.0001) and 72 hours (P < 0.05) of treatment. Compared with the control cells, Bax gene’s mRNA expression increased and Bcl-2’s mRNA expression decreased considerably after treating for 24 hours with 80% hAFMSCs-CM (P = 0.0012, P < 0.0001, respectively); an increasing pattern in P53 protein expression could also be observed. The flow cytometry analysis indicated apoptosis. Results from literature mining and the integrated meta-analysis showed that hAFMSCs-CM is able to activate a molecular network where Bcl2 downregulation stands in harmony with the upregulation of P53, EIF5A, DDB2, and Bax, leading to the activation of apoptosis.

    Conclusion

     Our finding demonstrated that hAFMSCs-CM presents apoptotic effect on MCF-7 cells; therefore, the application of hAFMSCs-CM, as a therapeutic reagent, can suppress breast cancer cells’ viabilities and induce apoptosis.

    Keywords: MCF-7 cells, hAFMSCs-CM, Bax, Bcl-2 genes, P53, Apoptosis, Meta-analysis
  • Forough Alemi, Masomeh Maleki, Mostafa Mir, Abbas Ebrahimi-Kalan, Mojtaba Zarei, Bahman Yousefi*, Nadereh Rashtchizadeh* Pages 207-218
    Introduction

    Doxorubicin (DOX) is one of the most common drugs in cancer treatment. However, its partial solubility along with the high incidence of side effects remains a challenge to tackle. To address these issues, we designed a formulation based on graphene oxide (GO) and used it as an anticancer drug delivery system.

    Methods

    The physical and chemical properties of the formulation were studied using FTIR, SEM, EDX, Mapping, and XRD. Release studies in the in vitro condition were used to evaluate the pH sensitivity of drug release from nanocarriers. Other in vitro studies, including uptake assay, MTT, and apoptosis assay were carried out on the osteosarcoma cell line.

    Results

    In vitro release studies confirmed that the synthesized formulation provides a better payload release profile in acidic conditions, which is usually the case in the tumor site. On the OS cell line, the cytotoxicity of the DOX-loaded nanocarrier (IC50=0.293 μg/mL) and early apoptosis rate (33.80 % ) were higher in comparison to free DOX (IC50=0.472 μg/mL, and early apoptosis rate= 8.31 % ) after 48 hours.

    Conclusion

    In summary, our results suggest a DOX-loaded graphene oxide carrier as a potential platform for targeting cancer cells.

    Keywords: Doxorubicin, GO nanosheet, Osteosarcoma, Quaternized imidazolium, Tris-modified GO
  • Zhaohui Liu*, Yanli Meng, Yu Miao, Lili Yu, Qiannan Yu Pages 219-228
    Introduction

    Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear.

    Methods

    LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro.

    Results

    AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects.

    Conclusion

    Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.

    Keywords: Artesunate, SIRT1, Lipopolysaccharide, Acute lung injury
  • Diba Ghasemi, Somayeh Ebrahimi-Barough, Mohammad Hossein Nekoofar, Abdolreza Mohamadnia, Nasrin Lotfibakhshaiesh, Naghmeh Bahrami, Roya Karimi, Vajihe Taghdiri Nooshabadi, Mahmoud Azami, Elham Hasanzadeh, Jafar Ai* Pages 229-240
    Introduction

    Human endometrial mesenchymal stem cells (hEnMSCs) are a rich source of mesenchymal stem cells (MSCs) with multi-lineage differentiation potential, making them an intriguing tool in regenerative medicine, particularly for the treatment of reproductive and infertility issues. The specific process of germline cell-derived stem cell differentiation remains unknown, the aim is to study novel ways to achieve an effective differentiation method that produces adequate and functioning human gamete cells.

    Methods

    We adjusted the optimum retinoic acid (RA) concentration for enhancement of germ cell-derived hEnSCs generation in 2D cell culture after 7 days in this study. Subsequently, we developed a suitable oocyte-like cell induction media including RA and bone morphogenetic protein 4 (BMP4), and studied their effects on oocyte-like cell differentiation in 2D and 3D cell culture media utilizing cells encapsulated in alginate hydrogel.

    Results

    Our results from microscopy analysis, real-time PCR, and immunofluorescence tests revealed that 10 µM RA concentration was the optimal dose for inducing germ-like cells after 7 days. We examined the alginate hydrogel structural characteristics and integrity by rheology analysis and SEM microscope. We also demonstrated encapsulated cell viability and adhesion in the manufactured hydrogel. We propose that in 3D cell cultures in alginate hydrogel, an induction medium containing 10 µM RA and 50 ng/mL BMP4 can enhance hEnSC differentiation into oocyte-like cells.

    Conclusion

    The production of oocyte-like cells using 3D alginate hydrogel may be viable in vitro approach for replacing gonad tissues and cells.

    Keywords: BMP4, Differentiation, hEnSCs, Oocyte-like cells differentiation, Retinoic acid, Stem cell
  • Mina Yousefnezhad, Soodabeh Davaran*, Mirzaagha Babazadeh, Abolfazl Akbarzadeh, Hamidreza Pazoki-Toroudi Pages 241-253
    Introduction

    Drug repurposing is an effective strategy for identifying the use of approved drugs for new therapeutic purposes. This strategy has received particular attention in the development of cancer chemotherapy. Considering that a growing body of evidence suggesting the cholesterol-lowering drug ezetimibe (EZ) may prevent the progression of prostate cancer, we investigated the effect of EZ alone and in combination with doxorubicin (DOX) on prostate cancer treatment.

    Methods

    In this study, DOX and EZ were encapsulated within a PCL-based biodegradable nanoparticle. The physicochemical properties of drug containing nanoparticle based on PCL-PEG-PCL triblock copolymer (PCEC) have been exactly determined. The encapsulation efficiency and release behavior of DOX and EZ were also studied at two different pHs and temperatures.

    Results

    The average size of nanoparticles (NPs) observed by field emission scanning electron microscopy (FE-SEM) was around 82±23.80 nm, 59.7±18.7 nm, and 67.6±23.8 nm for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively, which had a spherical morphology. In addition, DLS measurement showed a monomodal size distribution of around 319.9, 166.8, and 203 nm hydrodynamic diameters and negative zeta potential (-30.3, -6.14, and -43.8) mV for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively. The drugs were released from the NPs sustainably in a pH and temperature-dependent manner. Based on the MTT assay results, PCEC copolymer exhibited negligible cytotoxicity on the PC3 cell line. Therefore, PCEC was a biocompatible and suitable nano-vehicle for this study. The cytotoxicity of the DOX-EZ-loaded NPs on the PC3 cell line was higher than that of NPs loaded with single drugs. All the data confirmed the synergistic effect of EZ in combination with DOX as an anticancer drug. Furthermore, fluorescent microscopy and DAPI staining were performed to show the cellular uptake, and morphological changes-induced apoptosis of treated cells.

    Conclusion

    Overall, the data from the experiments represented the successful preparation of the nanocarriers with high encapsulation efficacy. The designed nanocarriers could serve as an ideal candidate for combination therapy of cancer. The results corroborated each other and presented successful EZ and DOX formulations containing PCEC NPs and their efficiency in treating prostate cancer.

    Keywords: Doxorubicin, Ezetimibe, PCL-based nanoparticles, Prostate cancer, Combination therapy
  • Mitra Torabi, Ayuob Aghanejad*, Pouria Savadi, Abolfazl Barzegari, Yadollah Omidi, Jaleh Barar* Pages 255-267
    Introduction

     Mesoporous silica nanoparticles (MSNPs) are considered innovative multifunctional structures for targeted drug delivery owing to their outstanding physicochemical characteristics.

    Methods

     MSNPs were fabricated using the sol-gel method, and polyethylene glycol-600 (PEG600) was used for MSNPs modification. Subsequently, sunitinib (SUN) was loaded into the MSNPs, MSNP-PEG and MSNP-PEG/SUN were grafted with mucin 16 (MUC16) aptamers. The nanosystems (NSs) were characterized using FT-IR, TEM, SEM, DLS, XRD, BJH, and BET. Furthermore, the biological impacts of MSNPs were evaluated on the ovarian cancer cells by MTT assay and flow cytometry analysis.

    Results

     The results revealed that the MSNPs have a spherical shape with an average dimension, pore size, and surface area of 56.10 nm, 2.488 nm, and 148.08 m2g-1, respectively. The cell viability results showed higher toxicity of targeted MSNPs in MUC16 overexpressing OVCAR-3 cells as compared to the SK-OV-3 cells; that was further confirmed by the cellular uptake results. The cell cycle analysis exhibited that the induction of sub-G1 phase arrest mostly occurred in MSNP-PEG/SUN-MUC16 treated OVCAR-3 cells and MSNP-PEG/SUN treated SK-OV-3 cells. DAPI staining showed apoptosis induction upon exposure to targeted MSNP in MUC16 positive OVCAR-3 cells.

    Conclusion

     According to our results, the engineered NSs could be considered an effective multifunctional targeted drug delivery platform for the mucin 16 overexpressing cells.

    Keywords: Ovarian cancer, Mucin 16 aptamer, Mesoporous silica nanoparticles, Targeted drug delivery, Sunitinib