فهرست مطالب

Journal of Artificial Intelligence and Data Mining
Volume:11 Issue: 3, Summer 2023

  • تاریخ انتشار: 1402/07/24
  • تعداد عناوین: 12
|
|
  • Newsha Nowrozian, Farzad Tashtarian *, Yahya Forghani Pages 331-341

    Wireless rechargeable sensor networks (WRSNs) are widely used in many fields. However, the limited battery capacity of sensor nodes (SNs) prevents its development. To extend the battery life of SNs, they can be charged by a mobile charger (MC) equipped with radio frequency-based wireless power transfer (WPT). The paper addressed the issue of optimizing route planning and charging based on an MC with directional charging in on-demand networks. A mixed integer linear programming model (MILP) is proposed to obtain the appropriate stopping points (SPs) and orientation charging angles to respond to input requests in the shortest possible time and with minimum energy consumption. First, to select the SPs and the orientation charging direction, we utilize a clustering and discretization technique while minimizing the number of SPs and maximizing the charging cover. Then, to decrease the charging time of the required SNs as well as the MC's energy consumption, we propose a heuristic search algorithm for adjusting the moving path for the directional mobile charger. Finally, experimental simulations are performed to evaluate the performance of the proposed directional charging scheduling algorithm, and the results reveal that the suggested approach outperforms existing studies in terms of MC energy consumption, charging delay, and distance traveled.

    Keywords: Wireless rechargeable sensor networks, Wireless power transfer technology, Directional antenna, Charge scheduling
  • Meysam Roostaee *, Razieh Meidanshahi Pages 343-355

    In this study, we sought to minimize the need for redundant blood tests in diagnosing common diseases by leveraging unsupervised data mining techniques on a large-scale dataset of over one million patients' blood test results. We excluded non-numeric and subjective data to ensure precision. To identify relationships between attributes, we applied a suite of unsupervised methods including preprocessing, clustering, and association rule mining. Our approach uncovered correlations that enable healthcare professionals to detect potential acute diseases early, improving patient outcomes and reducing costs. The reliability of our extracted patterns also suggest that this approach can lead to significant time and cost savings while reducing the workload for laboratory personnel. Our study highlights the importance of big data analytics and unsupervised learning techniques in increasing efficiency in healthcare centers.

    Keywords: Clinical Data, data mining, Unsupervised learning, Association Rule Mining, Clustering
  • Saheb Ghanbari Motlagh, Fateme Razi Astaraei *, Mojtaba Hajihosseini, Saeed Madani Pages 357-374

    This study explores the potential use of Machine Learning (ML) techniques to enhance three types of nano-based solar cells. Perovskites of methylammonium-free formamidinium (FA) and mixed cation-based cells exhibit a boosted efficiency when employing ML techniques. Moreover, ML methods are utilized to identify optimal donor complexes, high blind temperature materials, and to advance the thermodynamic stability of perovskites. Another significant application of ML in dye-sensitized solar cells (DSSCs) is the detection of novel dyes, solvents, and molecules for improving the efficiency and performance of solar cells. Some of these materials have increased cell efficiency, short-circuit current, and light absorption by more than 20%. ML algorithms to fine-tune network and plasmonic field bandwidths improve the efficiency and light absorption of surface plasmonic resonance (SPR) solar cells. This study outlines the potential of ML techniques to optimize and improve the development of nano-based solar cells, leading to promising results for the field of solar energy generation and supporting the demand for sustainable and dependable energy.

    Keywords: Machine learning, Optimization, Solar cell, Nano-based solar cell
  • Amirhossein Khabbaz, Mansoor Fateh *, Ali Pouyan, Mohsen Rezvani Pages 375-390

    Autism spectrum disorder (ASD) is a collection of inconstant characteristics. Anomalies in reciprocal social communications and disabilities in perceiving communication patterns characterize These features. Also, exclusive repeated interests and actions identify ASD. Computer games have affirmative effects on autistic children. Serious games have been widely used to elevate the ability to communicate with other individuals in these children. In this paper, we propose an adaptive serious game to rate the social skills of autistic children. The proposed serious game employs a reinforcement learning mechanism to learn such ratings adaptively for the players. It uses fuzzy logic to estimate the communication skills of autistic children. The game adapts itself to the level of the child with autism. For that matter, it uses an intelligent agent to tune the challenges through playtime. To dynamically evaluate the communication skills of these children, the game challenges may grow harder based on the development of a child's skills through playtime. We also employ fuzzy logic to estimate the playing abilities of the player periodically. Fifteen autistic children participated in experiments to evaluate the presented serious game. The experimental results show that the proposed method is effective in the communication skill of autistic children.

    Keywords: adaptive game, Reinforcement learning, fuzzy logic, ASD, serious game
  • Laleh Armi, Elham Abbasi * Pages 391-405

    In this paper, we propose an innovative classification method for tree bark classification and tree species identification. The proposed method consists of two steps. In the first step, we take the advantages of ILQP, a rotationally invariant, noise-resistant, and fully descriptive color texture feature extraction method. Then, in the second step, a new classification method called stacked mixture of ELM-based experts with a trainable gating network (stacked MEETG) is proposed. The proposed method is evaluated using the Trunk12, BarkTex, and AFF datasets. The performance of the proposed method on these three bark datasets shows that our approach provides better accuracy than other state-of-the-art methods.Our proposed method achieves an average classification accuracy of 92.79% (Trunk12), 92.54% (BarkTex), and 91.68% (AFF), respectively. Additionally, the results demonstrate that ILQP has better texture feature extraction capabilities than similar methods such as ILTP. Furthermore, stacked MEETG has shown a great influence on the classification accuracy.

    Keywords: Improved local quinary pattern, Extreme learning machine, Ensemble learning, bark classification
  • Hassan Haji Mohammadi, Alireza Talebpour *, Ahamd Mahmoudi Aznaveh, Samaneh Yazdani Pages 407-416

    Coreference resolution is one of the essential tasks of natural languageprocessing. This task identifies all in-text expressions that refer to thesame entity in the real world. Coreference resolution is used in otherfields of natural language processing, such as information extraction,machine translation, and question-answering.This article presents a new coreference resolution corpus in Persiannamed Mehr corpus. The article's primary goal is to develop a Persiancoreference corpus that resolves some of the previous Persian corpus'sshortcomings while maintaining a high inter-annotator agreement. Thiscorpus annotates coreference relations for noun phrases, namedentities, pronouns, and nested named entities. Two baseline pronounresolution systems are developed, and the results are reported. Thecorpus size includes 400 documents and about 170k tokens. Corpusannotation is done by WebAnno preprocessing tool.

    Keywords: Natural Language Processing, Mention, Anaphora resolution, Antecedent
  • Mina Tabatabaei, Hossein Rahmani *, Motahareh Nasiri Pages 417-427

    The search for effective treatments for complex diseases, while minimizing toxicity and side effects, has become crucial. However, identifying synergistic combinations of drugs is often a time-consuming and expensive process, relying on trial and error due to the vast search space involved. Addressing this issue, we present a deep learning framework in this study. Our framework utilizes a diverse set of features, including chemical structure, biomedical literature embedding, and biological network interaction data, to predict potential synergistic combinations. Additionally, we employ autoencoders and principal component analysis (PCA) for dimension reduction in sparse data. Through 10-fold cross-validation, we achieved an impressive 98 percent area under the curve (AUC), surpassing the performance of seven previous state-of-the-art approaches by an average of 8%.

    Keywords: Drug Combination Prediction, Synergistic effect, Computational techniques, deep learning
  • Fatemeh Zare Mehrjardi, Alimohammad Latif *, Mohsen Sardari Zarchi Pages 429-442

    Image is a powerful communication tool that is widely used in various applications, such as forensic medicine and court, where the validity of the image is crucial. However, with the development and availability of image editing tools, image manipulation can be easily performed for a specific purpose. Copy-move forgery is one of the simplest and most common methods of image manipulation. There are two traditional methods to detect this type of forgery: block-based and key point-based. In this study, we present a hybrid approach of block-based and key point-based methods using meta-heuristic algorithms to find the optimal configuration. For this purpose, we first search for pair blocks suspected of forgery using the genetic algorithm with the maximum number of matched key points as the fitness function. Then, we find the accurate forgery blocks using simulating annealing algorithm and producing neighboring solutions around suspicious blocks. We evaluate the proposed method on CoMoFod and COVERAGE datasets, and obtain the results of accuracy, precision, recall and IoU with values of 96.87, 92.15, 95.34 and 93.45 respectively. The evaluation results show the satisfactory performance of the proposed method.

    Keywords: Copy-move forgery, Block-based method, Key point-based method, Hybrid method
  • Mahsa Dehbozorgi, Pirooz Shamsinejadbabaki *, Elmira Ashoormahani Pages 443-451

    Clustering is one of the most effective techniques for reducing energy consumption in wireless sensor networks. But selecting optimum cluster heads (CH) as relay nodes has remained as a very challenging task in clustering. All current state of the art methods in this era only focus on the individual characteristics of nodes like energy level and distance to the Base Station (BS). But when a CH dies it is necessary to find another CH for cluster and usually its neighbor will be selected. Despite existing methods, in this paper we proposed a method that considers node neighborhood fitness as a selection factor in addition to other typical factors. A Particle Swarm Optimization algorithm has been designed to find best CHs based on intra-cluster distance, distance of CHs to the BS, residual energy and neighborhood fitness. The proposed method compared with LEACH and PSO-ECHS algorithms and experimental results have shown that our proposed method succeeded to postpone death of first node by 5.79%, death of 30% of nodes by 25.50% and death of 70% of nodes by 58.67% compared to PSO-ECHS algorithm

    Keywords: Optimization, neighborhood fitness, Energy Consumption
  • Saba Beiranvand *, MohammadAli Zare Chahooki Pages 453-476

    Software Cost Estimation (SCE) is one of the most widely used and effective activities in project management. In machine learning methods, some features have adverse effects on accuracy. Thus, preprocessing methods based on reducing non-effective features can improve accuracy in these methods. In clustering techniques, samples are categorized into different clusters according to their semantic similarity. Accordingly, in the proposed study, to improve SCE accuracy, first samples are clustered based on original features. Then, a feature selection (FS) technique is separately done for each cluster. The proposed FS method is based on a combination of filter and wrapper FS methods. The proposed method uses both filter and wrapper advantages in selecting effective features of each cluster, with less computational complexity and more accuracy. Furthermore, as the assessment criteria have significant impacts on wrapper methods, a fused criterion has also been used. The proposed method was applied to Desharnais, COCOMO81, COCONASA93, Kemerer, and Albrecht datasets, and the obtained Mean Magnitude of Relative Error (MMRE) for these datasets were 0.2173, 0.6489, 0.3129, 0.4898 and 0.4245, respectively. These results were compared with previous studies and showed improvement in the error rate of SCE.

    Keywords: Software Cost Estimation (SCE), Software Effort Estimation (SEE), Machine Learning methods, Clustering, Feature Selection
  • Saiful Bukhori *, Muhammad Bariiqy, Windi Eka Y. R, Januar Adi Putra Pages 477-485

    Breast cancer is a disease of abnormal cell proliferation in the breast tissue organs. One method for diagnosing and screening breast cancer is mammography. However, the results of this mammography image have limitations because it has low contrast and high noise and contrast as non-coherence. This research segmented breast cancer images derived from Ultrasonography (USG) photo using a Convolutional Neural Network (CNN) using the U-Net architecture. Testing on the CNN model with the U-Net architecture results the highest Mean Intersection over Union (Mean IoU) value in the data scenario with a ratio of 70:30, 100 epochs, and a learning rate of 5x10-5, which is 77%, while the lowest Mean IoU in the data scenario with a ratio 90:10, 50 epochs, and a learning rate of 1x10-4 learning rate, which is 64.4%.

    Keywords: Breast Cancer, Convolutional neural network, U-Net, Mean IoU
  • Akram Pasandideh *, Mohsen Jahanshahi Pages 487-504

    Link prediction (LP) has become a hot topic in the data mining, machine learning, and deep learning community. This study aims to implement bibliometric analysis to find the current status of the LP studies and investigate it from different perspectives. The present study provides a Scopus-based bibliometric overview of the LP studies landscape since 1987 when LP studies were published for the first time. Various kinds of analysis, including document, subject, and country distribution are applied. Moreover, author productivity, citation analysis, and keyword analysis is used, and Bradford’s law is applied to discover the main journals in this field. Most documents were published by conferences in the field. The majority of LP documents have been published in the computer science and mathematics fields. So far, China has been at the forefront of publishing countries. In addition, the most active sources of LP publications are lecture notes in Computer Science, including subseries lecture notes in Artificial Intelligence (AI) and lecture notes in Bioinformatics, and IEEE Access. The keyword analysis demonstrates that while social networks had attracted attention in the early period, knowledge graphs have attracted more attention, recently. Since the LP problem has been approached recently using machine learning (ML), the current study may inform researchers to concentrate on ML techniques. This is the first bibliometric study of “link prediction” literature and provides a broad landscape of the field.

    Keywords: Bibliometric, Social networks, social network analysis, Link prediction, Bradford’ s law