فهرست مطالب

Journal Of Applied Fluid Mechanics
Volume:17 Issue: 1, Jan 2024

  • تاریخ انتشار: 1402/08/20
  • تعداد عناوین: 20
  • M. Said *, N. Nait Bouda, S. Harmand Pages 1-18
    The laminar nature of flow in mini and microchannels has pushed researchers to develop novel solutions to overcome reaction rate reduction and heat/mass transfer issues. In this regard, Taylor flow is one of the possible solutions that could be used to enhance mixing inside mini and microchannels with reasonable pressure drop. The hydrodynamics of Taylor liquid-liquid flow is numerically studied in this work by employing two different droplet generation methods, specifically T-junction and patching methods. To this end, a three-dimensional model of rectangular microchannel flow is considered. The computational domain was designed and meshed by ICEM CFD and then simulated with commercial software ANSYS Fluent. The interface between the two phases was captured using the Volume of Fluid (VOF) method. The generating and development process of water droplets dispersed in an ethylene/propylene glycol carrier phase for both methods is discussed in detail. According to the results, both methods show satisfactory performance regarding liquid film and droplet shape, with only a slight difference. However, the patching method was found to be more economical in terms of computational time. This study would improve the state of knowledge on two-phase flow simulation in microchannels and thus contribute to the understanding of Taylor flow hydrodynamics.
    Keywords: CFD, Film thickness, Taylor flow, T-junction, Two-phase flow
  • G. E. Niño Del Río *, R. G. Ramirez Camacho, N. Manzanares Filho, W. De Oliveira, T. M. Arispe Angulo Pages 19-42
    Most large hydropower facilities employing conventional hydraulic turbines, e.g., Francis, Kaplan, or Bulb turbines, etc., cause significant harm to fish, resulting in high mortality rates, during turbine operation. This results from strong injury-inducing mechanisms at the rotor, including shear stresses, pressure variations, and pressure drop through the rotor. The study outlines a methodology for designing a fish-friendly turbine that is suitable for high-power generation applications. This methodology for a hydraulic channel design within the turbine rotor was derived based on classical fundamental applications of a rotor design, supplemented by subsequent assessments that incorporate fish-friendly design parameters that have been documented in the existing literature. A spiral curve characterized by a linear angle variation between the rotor's inlet and outlet was employed to project the blade geometry. Here, the Göttingen hydrofoil series was used, while a second-order polynomial function guided the hub design. Both of these parametrizations sought to enhance the turbine's hydraulic efficiency. Minimum Absolute Pressure, Strain Rate, and Pressure Variation Rate intervals were established as assessment criteria for fish survival for certain species, as has also been previously explored in the literature. The findings were outlined in terms of hydrodynamic performance and flow behavior within the rotor. An improvement in hydraulic efficiency was observed, transitioning from a Preliminary Turbine geometry design to an Optimized Turbine Geometry design. The turbine rotor was optimized using Computational Fluid Dynamics (CFD) simulations, generated from a Design of Experiments (DOE). Modifications to the hydrofoil type, the sweep angle, and the trailing edge angle of the blades were all made, coupled with integrations of assessments considering fish-friendly parameters.
    Keywords: Fish-Friendly Turbine Rotor, Spiral curve, Linear angle variation, Hydraulic performance, Design, Optimization, CFD
  • R. A. Tartandyo, B. M. Ginting *, J. Zulfan Pages 43-59
    In this study, the Large Eddy Simulation (LES) model in OpenFOAM was used to investigate the scale effects in the physical modeling of recirculating shallow flow at low Froude numbers. A laboratory test of turbulent flow through a submerged conical island with a Reynolds number of 6,210 was selected. The lab prototype was scaled with factors of 3 and 10 for both undistorted and distorted models. Our study employed the Froude similarity as the gravitational force is more dominant than the others (viscous, drag, and cohesion forces). Because the fluid (water) used for the prototype and model is the same, it is impossible to match the Reynolds, Weber, and Froude numbers simultaneously, resulting in the scale effects. For a scale of 1:1, the LES model could simulate the experimental data by appropriately capturing the vortices behind the conical island. For the undistorted models with scales of 3 and 10, the numerical model captured weaker magnitudes of vortices than the 1:1 scale, indicated by the discrepancies in velocity. In fact, the magnitudes of vortices became weaker with the distorted models. We also observed a significant increment in energy loss behind the conical island (where recirculating flows exist) as the scale increased. However, no significant discrepancies in velocity were observed between the results of the 1:1 scale and the scaled models in front of the conical island, where vortices were absent. These results indicate that the scale effects due to the Froude similarity are quite significant provided that recirculating turbulent flow occurs.
    Keywords: Large Eddy Simulation (LES), OpenFOAM, Physical modeling, Recirculating flow, Scale effects
  • M. Nemati, A. Jahangirian * Pages 60-74
    A novel approach is presented for predicting compressible turbulent flow fields using a neural network-based data-driven method. Accurate prediction in turbulent regions heavily relies on the resolution of available data. Traditional methods, employing image-based techniques by mapping scattered computational fluid dynamics (CFD) data onto Cartesian grids, encounter data scarcity in critical areas such as the boundary layer and wake. Recently, convolutional neural networks (CNN) have gained prominence as the most widely referenced technique in fluid dynamics, utilizing flow field images as datasets for flow field prediction. However, CNN requires datasets with a high pixel density to enhance training accuracy in crucial regions, thereby increasing the input data volume and machine training time. To address this challenge, our proposed method deviates from using flow field images and instead generates datasets directly from the flow field properties of CFD grid points. By employing this approach, several advantages are realized. Firstly, the network benefits from the favorable characteristics of unstructured grids, such as varying point spacing near the object surface and in the far field, which effectively reduces the amount of input data and consequently the machine training cost. Secondly, the construction of the training dataset eliminates the need for interpolation or extrapolation, thereby preserving the accuracy of CFD data. In this case, a simple multilayer perceptron can be trained using the proposed dataset. Various flow field properties, including static pressure, turbulent kinetic energy, and velocity components, can be predicted with high accuracy within a few seconds.
    Keywords: Flow field prediction, Turbulent flow, Machine learning, Data-driven, Surrogate Models, Computational fluid dynamics
  • H. J. Zhao, D. Zhang, X. F. Lv *, L. L. Song, J. W. Li, F. Chen, X. Q. Xie Pages 75-88
    Oil spill accidents in damaged submarine-buried pipelines cause tremendous economic losses and serious environmental pollution. The accurate prediction of oil spills from subsea pipelines is important for emergency response. In this study, the volume-of-fluid model, realizable k–ε turbulence model, and porous-medium model were employed to describe the process of an oil spill from a submarine pipeline to the sea surface. The effects of seawater density, seawater velocity, and pipeline buried depth on the transverse diffusion distance of crude oil and the time at which crude oil reaches the sea surface were obtained through numerical calculations. The calculation results show that, with a decrease in seawater density and an increase in seawater velocity and pipeline depth, the diffusion rate of crude oil decreases significantly, the maximum transverse diffusion distance increases and crude oil takes a long time to reach the sea surface. In particular, compared with a sea density of 1045 kg/m3, the transverse distance of a sea density of 1025 kg/m3 is increased by 0.091 m. When the seawater velocity is greater than 1.5 m/s, the diffusion of crude oil in seawater is significantly affected, the seawater velocity increases to 0.35 m/s, and the transverse diffusion distance of oil to the sea surface increases to 12.693 m. When the buried depth of the pipeline reaches 0.7 and 1.3 m compared to 0.1 m, the diffusion widths of crude oil in sea mud rise by 20% and 32.5%, respectively. The time required for crude oil to reach the sea surface and the transverse diffusion distance of crude oil migrating to the sea surface were analyzed using multiple regression, and the fitting formulas were obtained. The results provide theoretical support for accurately predicting the leakage range of submarine-buried pipelines and provide valuable guidance for submarine-buried pipeline leakage accident treatment schemes.
    Keywords: Submarine buried pipeline, Crude oil leakage, Oil spill, Numerical simulation, Multiphase flow
  • N. Shrivastava *, A. K. Rai Pages 89-104
    In high-head Pelton turbines, the injector faces severe erosion due to suspended sediment leading to a reduction in turbine efficiency and higher maintenance costs. Here, the effects of design parameters such as the bend angle of the nozzle pipe, nozzle angle, and needle angle along with an operating parameter stroke ratio on hydro-abrasive erosion of Pelton turbine injector are numerically investigated. The Volume of Fluid (VOF) model was implemented for capturing the interphase between air and water; whereas, the SST k-ω model is used for modelling the turbulence effect. For tracking the discrete phase, a Eulerian-Lagrangian based Discrete Phase Model (DPM) is considered. The bend angles led to flow circulations in the nozzle pipe causing the non-uniform distribution of sediment concentration and uneven erosion patterns. Irrespective of the bend angle, the erosion hotspot in the needle is observed toward the bend side. Further, for larger sediment particles, higher bend angles lead to more erosion rate in both the nozzle and needle and must be avoided to prevent excessive damage. As the needle angle increases from 40° to 60° for a constant nozzle angle, the nozzle erosion rate increases by 70% and the needle erosion rate decreases by 99%. Hence, an injector design can be optimized in hydro-abrasive erosion conditions by selecting a needle angle between 40° and 60°. Further, the operation of the injector at too high and low a stroke ratio results in excessive erosion of the nozzle and needle, respectively. In this study, a stroke ratio of 0.45 is found to be the most suitable for hydro-abrasive erosion conditions. Moreover, the asymmetricity in the erosion pattern of the needle increases with needle angle and stroke ratio resulting in jet quality degradation, one major reason for efficiency reduction in Pelton turbines.
    Keywords: Hydropower, Hydro-abrasive erosion, Pelton injector, Bend angle, Nozzle, needle angle
  • Z. Wang, Y. Yin, S. Li *, Y. Xu, L. Li, G. Li Pages 105-115
    Based on the large eddy simulation method, this study performed the three-dimensional transient numerical analysis of the near-wall flow field of the spiral flow in a circular pipe and applied the sub-grid model of the kinetic energy transport. The low-speed bands, streamwise vortices and hairpin vortices of the spiral flow in the near-wall region of the circular pipe are determined using the Q criterion. The ejection and sweeping of coherent structures are identified using the velocity vector of the near-wall region; moreover, the two methods of creating the hairpin vortices are established by the image time series. The results demonstrate that the development directions of the near-wall bands, streamwise vortices and hairpin vortices of the spiral flow in the circular pipe develop along the path of the spiral line. The average spanwise period of the low-speed bands in the near-wall region is approximately 120 wall units, the length is more than 900 wall units and the height is not more than 40 wall units. The separation distance of the streamwise vortices is about 119 wall units. It has a certain angle with the wall (approximately 22°). The average burst period of a hairpin vortices is less than 0.015 s.
    Keywords: Coherent structure, Large-eddy simulation, Near-wall turbulence, Spiral flow, Q Criterion
  • A. A. Luo, Q. K. Xiao, X. Liu *, J. C. Guo, Y. H. Zhang Pages 116-135
    A surface diversion groove with a specific geometry and position can influence the laminar flow characteristics of a projectile, which may affect the flight trajectory of an aircraft. The asymmetric flow field around the projectile can be induced by the diversion groove, which can produce an obvious aerodynamic force and moment at the projectile nose for trajectory correction. This study applied a diversion groove structure to the nose of tail-stabilized projectiles to investigate its impact on the aerodynamic characteristics of the projectile. The mathematical expressions for the aerodynamic force and aerodynamic coefficient were established theoretically. The change in the aerodynamic coefficient as a function of the phase angle of the diversion groove was determined. A parametric simulation was employed to investigate how the diversion groove affects the aerodynamic attributes of the projectile across various Mach numbers and angles of attack. The simulation results are consistent with the variation trends of aerodynamic forces and moments with respect to the phase angle of the diverter groove, as predicted by the static mathematical model. These findings demonstrate that the variation trends of the lift coefficient and pitching moment coefficient with respect to the angle β approximate a cosine function. Meanwhile, the variation trends of the yaw force coefficient and yaw moment coefficient with respect to the angle β approximate a sine function. The tail-stabilized projectile with asymmetrical diversion groove achieved a reduction of 1.2% in drag coefficient compared with that of the canard rudder corrective projectile, while the lift coefficient and pitch moment coefficient were increased by 6.4% and 16%, respectively, in the subsonic regime. The static margin of the projectile ranging from 13% to 16%. This study offers valuable insights for the design of corrective structures with diversion grooves and trajectory control.
    Keywords: Diversion groove, Asymmetric nose, Two-dimensional correction, Ballistic correction projectile, CFD
  • S. Samuel *, A. Wicaksono, W. A. Kurniawan, E. S. Hadi, T. Tuswan, A. Trimulyono, M. Muryadin Pages 136-147
    This study discusses the inverted bow design on the combatant hull form. Changes in the shape of the stem angle and flare bow are used as analytical parameters to investigate the ship's performance. Ship resistance and motion will be predicted using the Computational Fluid Dynamics (CFD) approach using the Reynolds Averaged Navier Stokes (RANS) equation and the k-ε turbulence model. The volume of fluid (VOF) method is applied to simulate the change in the free surface between water and air using an overset mesh technique. The ship's movement is limited to sinkage and trim motions, so the movement's accuracy can be predicted. The results revealed that the inverted bow reduced the total resistance by 6.30%, whereas the trim and sinkage showed no significant changes. The breakdown of the reduction ratio showed that friction resistance components were reduced by 10.62%, wave resistance by 44.05%, and viscous-pressure resistance by 45.33%. This highlights the effectiveness of an inverted bow in optimizing wave and viscous pressure, enhancing overall ship performance.
    Keywords: Inverted bow, resistance, Sinkage, Trim, Computational fluid dynamics
  • M. L. Zhou, D. Han *, L. Zhu, S. Y. Yu, Y. F. Gao, Q. L. Shi, W. F. He Pages 148-158
    Vortex rings can maintain their structure during motion and achieve long-distance transport with low energy consumption, which is a fluid transport method with great energy-saving potential. In this paper, a reciprocating vortex ring generator structure is designed, which can generate two vortex rings during the reciprocating motion of one piston, making full use of the thrust in the reciprocating motion period of the piston and improving the vortex ring generation frequency compared with traditional vortex ring generators. For the characteristics of long-distance transport of vortex rings, an experimental platform is designed and built, and 277 sets of experiments are carried out with different geometric parameters. The results show that the effect of generating two vortex rings could be achieved under other parameter conditions, except for some parameter conditions where the diameter ratio D1/D2 = 4. By analyzing the influence of baffle width ratio, length ratio, and diameter ratio on the moving distance of vortex rings, the performance of the vortex ring generator is preliminarily studied. In 277 sets of experiments, the maximum moving distance ratio x1 of vortex ring 1 is 13.7 when L1/L2 = 2.4, D1/D2 = 2, and w1 = 0.2. And the maximum moving distance ratio x2 of vortex ring 2 is 20 when L1/L2 = 2, D1/D2 = 2.5, and w2 = 0.2.
    Keywords: Vortex ring generator, Structural design, Moving distance, Piston, Fluid transport
  • T. P. Chen *, X. Z. Wei, R. S. Bie, Y. Li, T. Zhang, Y. X. Liu Pages 159-175
    Utilizing a two-stage vertical pump as turbine (TVPAT) is an economically method for constructing small-scale pumping and storage hydropower stations at high head-low discharge sites, such as underground coal mines. The energy dissipation mechanisms in flow passages are theoretically important for performance prediction and geometric parameter optimization. In this paper, the energy dissipation within the TVPAT has been studied using entropy generation theory, which can be applied to visual, locate and quantify energy dissipation. The numerical solution of entropy dissipation components was extracted on turbine modes in different flow rates using the steady-state single-phase SST k-ω turbulence model. The numerical results show that the energy dissipation in TVPAT mainly comes from turbulent fluctuation (43.6%-72.1%) and blade surface friction (27.8%-58.2%). The runners are the main source of turbulent entropy (SD′  ) generation (47.2%-83.3%). The contribution of the return channel and spiral case to the  generation under overload conditions is significant, accounting for 33.6% and 14.3 at 1.3QBEP, respectively. Flow field analysis reveals that high  generation within a runner are located in the striking flow region of the leading edge, the flow squeezing region in the blade channel, and the wake region of tailing edge. The mismatch between the placement angle of the blades or guide vanes and the liquid flow angle is an important incentive for SD′ generation. Moreover, hydraulic energy is consumed through the interaction between mainstream and local inferior flows such as separation and vortices, as well as the striking and friction between local fluid and wall surfaces.
    Keywords: Pump as turbine, Two-stage, Energy dissipation, Entropy generation theory, Pumping, storage
  • H. Zarei, M. Passandideh Fard * Pages 176-191
    The numerical investigation has been performed on the cross-axis-flow lucid spherical turbine. This type of cross-axis flow turbine generates moments through the forces acting on its blade cross-sections. To evaluate its power and performance, a three-dimensional simulation procedure was performed. The experimental results of Bachant and Wosnik have been used to verify the numerical predictions. The spherical lucid model turbine which they examined had 4 blades with NACA 0020 section and 16cm chord length. Drag and power coefficients were used to compare the data for the water inlet velocity 1m/s and different non-dimensional tip-speed-ratio (inlet velocity / linear rotating velocity of the blade). This paper has selected two airfoil sections, NACA 2412 and NACA 64(3)418, to design the turbine blades. The influence of four effective blade parameters, inclusive of profile section type, chord length, number of blades, and blade twist angles, on turbine performance over a wide range of tip speed ratios, is investigated. It can deduce that the power coefficient has increased up to 22% for NACA 2412 compared to the experimental test. Also, the three-bladed turbine possesses the best results among all models. For this model, the power coefficient increased by 12% and 71% for NACA 2412 and NACA 64(3)418 sections, respectively. The twist of the blades increases the power coefficient by 19% and 31% for NACA 2412 and NACA 64(3)418 sections inside the channel respectively. Increasing the blade chord length causes to increase in power coefficient of up to 12% for NACA 2412 section compared to the experimental test.
    Keywords: Lucid spherical turbine, Drag coefficient, Power coefficient, Helical turbine, Asymmetric airfoils
  • Y. Ren, C. Bai *, H. Zhang Pages 192-204
    The plunger valve has an important role in a large compressor system as its operating characteristics directly affect the aerodynamic boundary condition of the compressor equipment. In this study, dynamic modeling and analysis method of the plunger valve are proposed for an accurate control of the system. By considering the interaction between the dynamic flow in the valve and actuator action, a lumped parameter model for the fluid–structure interaction force and multibody dynamic model of the actuator are developed based on intrinsic correlation parameters. A combination analysis to simultaneously predict valve flow and actuator dynamic characteristics is proposed. The predicted results are in a good agreement with experimental data, which validates the proposed model and analysis method. The analysis results show that the coupling effect between the valve flow and actuator is significant and has an important role in valve control, particularly when the valve opening is smaller. Compared to the experimental data and computational fluid dynamics results, the presented methods are accurate for valve control and effective for prediction of flow rate.
    Keywords: Plunger valve, Actuator, Dynamic model, Combination analysis, Flow characteristics
  • M. Akhlaghi *, M. Asadbeigi, F. Ghafoorian Pages 205-218
    The deteriorating effects of greenhouse gases resulting from the use of fossil fuels have led to increased public attention to renewable energy sources, with wind energy being a particularly favored option. This prompted the development of various wind turbine types' efficiency. This study intends to explore the influence of key design parameters consisting of the number of blades, blade chord length, helical angle, and J-shaped blade on the performance and self-starting ability of a Darrieus VAWT. Furthermore, implementing an efficient optimization model to obtain maximum power based on the numerical findings. To achieve this, two different numerical modeling approaches, namely Computational Fluid Dynamics (CFD) and Double Multi-Streamtube (DMST), have been applied. The results indicated that employing a higher blade number and chord length enhances the starting capability of the turbine. Moreover, increasing the helical angle to 60° reduces the generated torque fluctuations. Inspired by the design of the Savonius turbine, the implementation of a J-shaped airfoil boosted the Cp at low TSR. Finally, the Kriging optimization method has been employed to optimize the design parameters explored through CFD analysis. The outcomes showed that the optimum configuration of the examined Darrieus VAWT comprises a 3-bladed rotor with a blade chord length of 0.04 m and helical angle of 0° and a J-shaped blade length ratio of 0.68. This configuration yields an 10% increase in efficiency at the optimum TSR.
    Keywords: Darrieus VAWT, Power coefficient, CFD simulation, DMST simulation, Kriging optimization
  • H. Wu, F. Jin, Y. Luo *, Y. Ge, Q. Wei, C. Zeng, X. Liu, W. Zhang, D. Miao, H. Bai Pages 219-232
    For the purpose of automatic generation control (AGC), a portion of the propeller hydro-turbine units in China is adjusted to operate within a restricted range of 75%-85% load using computer-controlled AGC strategies. In engineering applications, it has been observed that when a propeller hydro-turbine unit operates under off-design conditions, a large-scale vortex rope would occur in the draft tube, leading to significant pressure fluctuations. Injecting air into the draft tube to reduce the amplitude of pressure fluctuations is a common practice, but its effectiveness has not been proven on propeller hydro-turbine units. In this study, a CFD model of a propeller hydro-turbine was established, and 15 cases with different guide vane openings (GVO, between 31° and 45°) under unsteady conditions were calculated and studied. Two air admission measures were introduced to suppress the vortex rope oscillation in the draft tube and to mitigate pressure fluctuations.  The reason for the additional energy loss due to air admission was then explained by the entropy production theory, and its value was quantified. This study points out that when injecting air, it is necessary to first consider whether the air will obstruct the flow in the draft tube. Finally, based on simulation and experimental data under various load conditions, pressure fluctuation analysis (based on fast Fourier transform, FFT) was conducted to assess the effectiveness of air admission measures. This study can provide an additional option for balancing unit efficiency and stability when scheduling units using an AGC strategy.
    Keywords: Propeller hydro-turbine, Computational fluid dynamics, Vortex rope, Pressure fluctuation, Air admission, Entropy production theory
  • S. S. Razavi, R. Shafaghat *, B. Alizadeh Kharkeshi, J. Eskandari Pages 233-250
    Among various types of wave energy converters, the oscillating water column (OWC) has attracted significant research attention. In this paper, a 1:10 scale OWC with dimensions of 100×100×160 cm, variable inlet height and draft was numerically studied. Based on the tests conducted, it was found that the wave amplitude in the range of Caspian Sea waves decreased with the increase of wave frequency, to the extent that at the sloshing frequency, the system efficiency dropped significantly. To solve this problem, changes in the geometry of the device were studied, and numerical simulations were performed at the highest frequency using OpenFOAM software. Using Reynolds-averaged Navier-Stokes (RANS) equations, numerical simulations were performed in 3D, two-phase, and turbulent flow conditions. Changing the geometry was initially investigated by adjusting the height of the OWC inlet duct, and then by adding an inlet at the different angles of 0, 20, and 40 degrees. The results showed that by increasing the height of the inlet by 10 cm while keeping the water depth and wave conditions constant, the maximum output power of the system increased by 54%. However, after the optimization of the inlet duct, it was found that the best angle for an inlet duct is 30°, compared to the case without an inlet, which increased the maximum output power by up to 13% and slightly reduced the sloshing by more than 50%.
    Keywords: Wave Energy, OWC, CFD, Sloshing, Performance
  • Y. Zhang, C. He, P. Li *, H. Qiao Pages 251-260
    As one of the essential components of the conventional island in a nuclear power plant, the ejector supplies cooling water to the reactor core in an accident state. It needs serious maintenance for its structural stability. The flow-induced vibration of an ejector in service was numerically examined in this research while taking the cavitation phenomenon into account. To achieve this goal, a bidirectional fluid–structure interaction simulation based on the ANSYS platform was run. In our lab, an experimental loop was also set up to validate the fluid model. Then, under specific circumstances, it was possible to monitor the cavitation revolution process, pressure variation, and ejector vibration. According to the numerical results, the distribution of the vapor phase is largely found in the mixing and diverging portions, and it changes over time. In the ejector, a significant wideband excitation was observed. Additionally, the von Mises stress and flow-induced vibrational features of the ejector structure were investigated.
    Keywords: Numerical simulation, Flow induced vibration, Fluid-structure interaction, Ejector system, Cavitation
  • M. Eskandari, S. S. Nourazar * Pages 261-272
    The study proposes a new method called MTRMC to simulate flow in rarefied regimes, which are important in various industrial and engineering applications. This new method utilizes a modified collision function with smaller number of inter-molecular collisions, making it more computationally efficient than the widely used direct simulation Monte Carlo (DSMC) method. The MTRMC method is used to analyze the flow over a flat nano-plate at various free stream velocities, ranging from low to supersonic speeds. The results are compared with those from DSMC and time relaxed Monte Carlo (TRMC) schemes, and the findings show that the MTRMC method is in good agreement with the standard schemes, with a significant reduction in computational expense, up to 51% in some cases.
    Keywords: Boltzmann equation, DSMC method, TRMC method, MTRMC method, Taylor series expansion, Nano-plate
  • Z. Wang *, F. Wang, H. Duan, W. Wang, R. Guo, Q. Yu Pages 273-283
    Oil–air flow within an oil bath lubrication tapered roller bearing is essential for the lubrication and cooling of the bearing. In this paper, we develop a simulation model to investigate the flow field of tapered roller bearings with oil bath lubrication. The multiple reference frame (MRF) approach is used to describe the physical motion of the bearing, and the volume of fluid (VOF) two–phase flow model is used to track the oil–air interface in the flow field. The effects of mesh scale, geometric gap, and oil reservoir size on calculation time and convergence accuracy are examined in detail, and the effects of inner ring rotational speed and lubricant viscosity on frictional torque are systematically studied. The results of the numerical simulation indicate that as the gap distance between the raceway and the rolling elements decreases, the frictional torque is mainly generated by churning losses at the inner raceway and the rolling elements. The frictional torque increases with increasing inner ring speed and lubricating oil viscosity, with the rolling element contributing the largest portion at approximately 50% of the total. We demonstrate the effectiveness of a method to reduce frictional torque by optimizing the internal structure of the bearing to control oil flow. By optimizing the cage structure and reducing the roller half-cone angle, frictional torque can be reduced by 29.1% and 26.2%, respectively.
    Keywords: Tapered roller bearings, Oil bath lubrication, Two-phase flow, Frictional torque, CFD simulation
  • P. Kattel, C. N. Tiwari, B. R. Dangol, J. Kafle * Pages 284-296
    Natural debris floods travel in straight and meandering courses. The flow behaviour greatly depends on the volume fractions of solid and fluid, as well as on their dynamic interactions with the channel geometry. For the quasi three-dimensional simulations of flow dynamics and mass transport of these floods through meandering and straight channels, we employ a two-phase debris flow model to carry out simulations for debris floods within straight and sine-generated meandering channels of different amplitudes. The results for different sinuous meandering paths are compared with that in the straight one in terms of phase velocity, downslope advection and dispersion, depths of the maxima, deposition of mass, position of front and rear parts of the solid and fluid phases, and also the flow dynamics out of the conduits. The results reveal the slowing of the flow and increase of momentary deposition of the mixture mass in the vicinity of the bends along with the increasing sinuosity. The numerical experiments are useful to better understand the dynamics of debris floods down meandering channels as seen in the natural paths of the rivers as well as already existing channels like episodic rivers in hilly regions. The results can be extended to propose some appropriate mitigation strategies.
    Keywords: Two-phase mass flow, Debris flood, Meandering channel, Sinuosity, Flow within Conduits