فهرست مطالب
Biolmpacts
Volume:3 Issue: 4, Dec 2013
- تاریخ انتشار: 1392/10/15
- تعداد عناوین: 9
-
-
Pages 145-147
The name of lysosomal storage diseases stems from the fact that in this category of disorders specific undegraded materials are stored in the lysosomes. This is usually caused by a lysosomal enzyme deficiency and leads to a cascade of pathological outcomes. Apart from deficiency of lysosomal enzymes, lysosomal storage diseases also include deficiencies in proteins necessary for enzyme functioning, proteins needed for post-translational modification of these enzymes and proteins required for export of certain compounds from the lysosomes.
-
Pages 149-162Introduction
The dysregulation of pH by cancerous cells of solid tumors is able to create a unique milieu that is in favor of progression, invasion and metastasis as well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH dysregulation provide new set of oncotargets, inhibition of which may result in better clinical outcome.
MethodsTo study the impacts of pH dysregulation, we investigated the tumor development and progression in relation with Warburg effect, glycolysis and formation of aberrant tumor microenvironment.
ResultsThe upregulation of glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase) resulting in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid within the tumor microenvironment, which in return triggers secretion of lysosomal components (various enzymes in acidic milieu with pH 5) into cytoplasm. All these anomalous phenomena make tumor microenvironment (TME) to be exposed to cocktail of various enzymes with acidic pH, upon which extracellular matrix (ECM) can be remodeled and even deformed, resulting in emergence of a complex viscose TME with high interstitial fluid pressure.
ConclusionIt seems that pH dysregulation is able to remodel various physiologic functions and make solid tumors to become much more invasive and metastatic. It also can cause undesired resistance to chemotherapy and immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors of bioelements involved in pH dysregulation of TME in solid tumors.
-
Pages 163-168Introduction
At present, the polymer gel dosimeter is considered to be the best possible dosimeter for measuring 3-dimesional radiation dose distribution in radiotherapy. These gels are normally toxic; therefore, manufacturing, handling and discarding them require special attention. In order to find less toxic recipe, N-isopropyle acrylamide polymer gel (NIPAM) was introduced. In this study, the reproducibility and stability of NIPAM polymer gel dose response together with some influencing factors related to MR imaging were studied.
MethodsThe NIPAM gel was prepared according to a method, described by senden et al in 2006. The gels were irradiated approximately 2 h after manufacturing and MR images of the gel were made 24 h after irradiation. The effects of different batches, post-irradiation time and the MRI room temperature on reproducibility and stability of polymer gel dose response were explored by analyzing the NMR response (R2) of the gel.
ResultsIn a fixed temperature, the response of the gel was found to be stable 24 h after irradiation. The results showed that the dose response of the NIPAM polymer gel is highly reproducible in the same and different batches of chemical. No inhomogeneity was observed for magnetic fields in the specified position of measurements and 5°C fluctuation was recorded for MRI room temperature.
ConclusionFluctuation in MRI room temperature necessitates that stringent attention to be paid to controlling the gel temperature at the time of imaging. The new formulation of polymer gel ensures stability of the gels’ spatial resolution and makes it a suitable dosimeter for distant or remote measurements.
-
Pages 169-176Introduction
There is a pressing need for research leading to the development of new effective drugs with lower side effects and more efficacy for treating inflammatory bowel disease (IBD). The analgesic and anti-inflammatory properties of 5-Hydroxytryptamine (5-HT)-3 receptor antagonists have been shown in in vivo and in vitro studies. The present study was designed to investigate the effects of tropisetron, a 5-HT3 receptor antagonist, on an immune-based animal model of IBD.
MethodsIn the present study, the trinitrobenzenesulfonic acid (TNBS) model of colitis in the rat was used. Two hours after induction of colitis in rats, tropisetron (2 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, 5 mg/kg), a 5-HT3 receptor agonist, or tropisetron + mCPBG were intraperitoneally (i.p.) administrated for 6 days. Animals were then sacrificed; macroscopic, histological, biochemical (myeloperoxidase [MPO]) assessments and ELISA test (tumor necrosis factor-alpha, interleukin-6 and interleukin-1 beta) were performed on distal colon samples.
ResultsTropisetron or dexamethasone treatment significantly reduced macroscopic and microscopic colonic damages. In addition, a significant reduction in MPO activity and colonic levels of inflammatory cytokines was seen. The beneficial effects of tropisetron were antagonized by concurrent administration of mCPBG.
ConclusionThe present study indicates that the protective effects of tropisetron on TNBS-induced colitis can be mediated by 5-HT3 receptors.
-
Pages 177-183Introduction
M3 protein is a chemokine decoy receptor involved in pathogenesis of persistent infection with gammaherpesvirus and complications related to the latency of this pathogen. We proposed that antagonists of the M3 would provide a unique opportunity for studying new therapeutic strategies in disordered immune system, immune-deficient states and role of chemokines in pathogenesis development.
MethodsComparative modeling and fold recognition algorithms have been used for prediction of M3 protein 3-D model. Evaluation of the models using Q-mean and ProSA-web score, has led to choosing predicted model by fold recognition algorithm as the best model which was minimized regarding energy level using Molegro Virtual Docker 2011.4.3.0 (MVD) software. Pockets and active sites of model were recognized using MVD cavity detection, and MetaPocket algorithms. Ten thousand compounds accessible on KEGG database were screened; MVD was used for computer simulated docking study; MolDock SE was selected as docking scoring function and final results were evaluated based on MolDock and Re-rank score.
ResultsDocking data suggested that prilocaine, which is generally applied as a topical anesthetic, binds strongly to 3-D model of M3 protein.
ConclusionThis study proposes that prilocaine is a potential inhibitor of M3 protein and possibly has immune enhancing properties.
-
Pages 185-194Introduction
Proximal spinal muscular atrophy (SMA) is one of the most significant neurodegenerative diseases amongst the autosomal-recessive genetic disorders which is caused by the absence of protein survival of motor neuron (SMN). A critical nucleotide difference in SMN2 compared to SMN1 gene leads to an inefficient protein. Hence, homozygous lack of SMN1 provides a progressive disease. Due to the high prevalence, up to now, several molecular diagnostic methods have been used which most of them are lengthy, expensive, and laborious.
MethodsIn the present study, we exploited a gold nanoprobe-based method for semi-quantitative SMN1 gene dosage analysis compared to SMN2. The assay was done under hybridization process between Au nanoprobes and different ratios of SMN1/SMN2 amplicons.
ResultsUV-vis spectra indicated that after the salt addition, nanoprobes aggregated gradually and their peak shifted to longer wavelengths except in the stable target-nanoprobes hybridization. The results revealed that the homozygous genotype of SMN2 gene is distinguished from the heterozygous genotypes of SMN genes by the naked eye, whereas different ratio of heterozygous genotypes (SMN1/SMN2) are differentiated better from each other using peak analysis ratios.
ConclusionThe presented strategy is an alternative simple method for discrimination of homozygous deletion of SMN1 in less than 30 min. However, further evaluation of the assay using clinical samples is recommended prior to real-world use.
-
Pages 195-198Introduction
The worldwide increased bacterial resistance to antibiotics and the undesirable side effects associated with constant use of synthetic drugs has prompted the search for novel antimicrobial agents, particularly those manufactured from plants. This study is designed to ascertain the antibacterial potential of Rhus succedanea leaf gall extracts on the growth of gram-positive and gram–negative bacteria.
MethodsThe methanolic and hexane extract of different concentrations (100, 250, and 500 μg/ml) were prepared and their antibacterial efficacy was tested against clinical isolates of Escherichia coli, Salmonella typhi, Micrococcus luteus, and Staphylococcus aureus using agar well diffusion method and the size of inhibition zone was measured in millimeters.
ResultsThe methanol and hexane extracts differed significantly in their antimicrobial activity with methanol extract showing a potent inhibitory activity in the range of 16±2 to 23±1, which was almost equal to the values of ciprofloxacin (25±3), used as a standard. Further, the methanol extract was mostly potent and effective in inhibiting the growth of gram-negative bacteria, namely, E. coli, when compared to gram –positive bacteria stains, which are responsible for antimicrobial activities. The phytochemical screening showed positive results for the presence of steroids, triterpenes, alkaloids, and carbohydrates.
ConclusionThe potent antibacterial activity of Rhus succedanea leaf gall extracts indicates its useful therapeutic application against bacterial infection. Furthermore, this study indicates that the extract might be exploited as natural drug for the treatment of infectious diseases and could be useful in understanding the relations between traditional cures and current medications.