support vector machine (svm)
در نشریات گروه جغرافیا-
نشریه هیدروژیومورفولوژی، پیاپی 40 (پاییز 1403)، صص 102 -123در پژوهش حاضر خطر وقوع زمین لغزش در حوضه آبریز زمکان، واقع در استان کرمانشاه، ارزیابی شد. دو مدل ماشین بردار پشتیبان (SVM) و رگرسیون لجستیک برای تهیه نقشه حساسیت زمین لغزش استفاده شد. در راستای اهداف تحقیق، 13 لایه اطلاعاتی شامل ارتفاع، شیب، جهت شیب، عدد ناهمواری ملتون، تحدب سطح زمین، طول دامنه، عمق دره، رطوبت توپوگرافیک، بارش، سازندهای زمین شناسی، فاصله از آبراهه، فاصله از جاده و پوشش گیاهی به عنوان متغیرهای مستقل استفاده شد. حدود 70 درصد پیکسل های لغزشی حوضه به منظور آموزش و 30 درصد برای اعتبارسنجی مدل استفاده شدند. اعتبارسنجی مدل ها با کاربست منحنی ROC صورت گرفت. نتایج نشان دهنده کارایی و دقت بالاتر تابع پایه شعاعی (RBF) مدل SVM برای تهیه نقشه خطر زمین لغزش منطقه است. مساحت زیر منحنی (AUC) تابع پایه شعاعی حدود 951/0 برای آموزش مدل و 944/0 برای آزمون مدل به دست آمد. نتایج بیانگر این است که فاکتورهای شیب با ضریب 28/0، بارش با ضریب 27/0، لیتولوژی با ضریب 26/0 و ارتفاع با ضریب 22/0 کنترل کننده های اصلی وقوع زمین لغزش در سطح حوضه آبریز زمکان هستند. توابع مدل SVM و هم چنین رگرسیون لجستیک نیز اثرات قطعی فاکتورهای انتخابی بر وقوع زمین لغزش را تائید کردند. براساس نقشه پهنه بندی زمین لغزش حدود 35 درصد مساحت حوضه مطالعاتی در کلاس خطرپذیری زیاد و بسیار زیاد قرار گرفته است. پهنه های مذکور عمدتا در نیمه شرقی حوضه توزیع شده اند. ارتفاع زیاد، غلبه شیب های تند، دریافت نزولات جوی قابل توجه و رخنمون وسیع سازند کژدمی با تناوبی از لایه های آهکی، رسی، مارنی و شیلی مهم ترین دلایل حساسیت بالای این پهنه ها نسبت به زمین لغزش هستند.کلید واژگان: زمین لغزش، رگرسیون لجستیک، ماشین بردار پشتیبان (SVM)، حوضه آبریز زمکان، استان کرمانشاهIn the current study, the risk of landslides in the Zamkan Watershed, located in Kermanshah Province, was evaluated. Two machine learning models, Support Vector Machine (SVM), and Logistic Regression, were used to prepare a landslide susceptibility map. Toward this, 13 informational layers including elevation, slope, aspect, Melton ruggedness number, terrain convexity, stream length, valley depth, topographic wetness index, precipitation, geological formations, distance from rivers, distance from roads, and vegetation cover were utilized as independent variables. Approximately 70% of the watershed's landslide pixels were used for model training, and 30% for model validation. Model validation was performed using ROC curves. The results indicated the higher performance and accuracy of the radial basis function (RBF) kernel of the SVM model for generating landslide hazard maps in the study area. The area under the curve (AUC) for the RBF kernel was approximately 0.951 for model training and 0.944 for model testing. The results suggest that slope with a coefficient of 0.28, precipitation with a coefficient of 0.27, lithology with a coefficient of 0.26, and elevation with a coefficient of 0.22 are the main controlling factors for landslides occurrence in the Zamkan Watershed. Both the SVM model and logistic regression confirmed the deterministic effects of selected factors on landslides. About 35% of the study area as classified as highly susceptible to landslides, primarily in the eastern half of the watershed. Factors such as high elevation, steep slopes, heavy precipitation, and the Kazhdomi Formation's composition were identified as key contributors to this susceptibility.Keywords: Landslide, Logistic Regression, Support Vector Machine (SVM), Zamkan Watershed, Kermanshah Province
-
یکی از اولویت های مهم وزارت جهاد کشاورزی، تهیه نقشه نوع محصول کشاورزی برای تخمین میزان سطح زیرکشت محصولات استراتژیک و برآورد سالیانه میزان تولید آنهاست. در دهه های اخیر، فناوری سنجش از دور به دلیل تهیه تصاویر و داده های به هنگام با تفکیک پذیری های متنوع مکانی، زمانی و طیفی و با بهره گیری از الگوریتم های یادگیری ماشین بهبودیافته در تخمین میزان سطح زیرکشت محصولات کارایی زیادی را نشان داده است. در پژوهش حاضر با استفاده از سری زمانی تصاویر ماهواره لندست-8 و الگوریتم های یادگیری ماشین پیشرفته یک چهارچوب تهیه نقشه نوع محصول کشاورزی مرودشت استان فارس ارائه شد. الگوریتم های به کار گرفته شده شامل الگوریتم درخت تصمیم، جنگل تصادفی، جنگل دورانی، ماشین بردار پشتیبان و آنالیز انحراف زمانی پویا بود. نتایج نشان داد که روش های آنالیز انحراف زمانی پویا و جنگل تصادفی نسبت به روش های دیگر کارایی بسیار بیشتری (با افزایش دقت کلی به میزان 10% تا 12% بیشتر) در تهیه نقشه نوع محصول کشاورزی منطقه مطالعه شده داشتند. همچنین، در این پژوهش قابلیت باندهای 2 تا 5 ماهواره لندست-8 در شناسایی کارا و مطمئن همه محصولات این منطقه با استفاده از روش های مذکور اثبات شد.
کلید واژگان: هیه نقشه نوع محصول کشاورزی، تخمین سطح زیرکشت، ماهواره لندست-8، یادگیری ماشین، جنگل تصادفی، ماشین بردار پشتیبان، آنالیز انحراف زمانی پویا، سنجش از دورOne of the key priorities of the Ministry of Agriculture Jihad is the mapping of croplands to estimate crop acreage and annual yield. In recent decades, remote sensing technology has proven to be highly effective in estimating the extent of crop cultivation through the use of timely images and synchronized data with diverse spatial, temporal, and spectral resolutions, leveraging advanced machine-learning algorithms. This study presented a framework for crop mapping in Marvdasht, Fars Province, by utilizing time series of Landsat-8 satellite images and advanced machine-learning algorithms. The employed algorithms included Decision Tree (DT), Random Forest (RF), Rotation Forest (RoF), Support Vector Machine (SVM), and Dynamic Time Warping (DTW) analysis. The results indicated that the dynamic time warping and random forest methods outperformed others, achieving significantly higher accuracy (with an overall accuracy improvement of 10-12%) in generating the agricultural land-use map of the study area. Furthermore, this research demonstrated the effectiveness of Bands 2-5 of Landsat-8 satellite in confidently identifying all crops in this region using the mentioned methods.
Keywords: Crop Mapping, Crop Acreage Estimation, Landsat-8 Satellite, Machine Learning, Random Forest (RF), Support Vector Machine (SVM), Dynamic Time Warping (DTW), Remote Sensing -
پدیده آتش سوزی جنگل ها، از مخاطرات محیط زیستی مهم محسوب می شود. داده های ماهواره لندست 8 با توان تفکیک مکانی متوسط و دسترسی آسان از منابع مهم در زمینه پایش آتش سوزی های گسترده است. هدف این مقاله ارزیابی رویکرد تک زمانه و دوزمانه مبتنی بر تصویر حین آتش سوزی و تصاویر قبل و بعد از آتش سوزی از ماهواره لندست 8 و طبقه بندی کننده های ماشین بردار پشتیبان و جنگل تصادفی برای شناسایی آتش سوزی جنگل هاست. نتایج پردازش تصاویر ماهواره ای جنگل های پارادایز منطقه ساکرامنتو در ایالت کالیفرنیا، نشان داد که روش طبقه بندی جنگل تصادفی بر روی داده تک زمانه حین آتش سوزی با صحت کلی 83/99 درصد، در مقایسه با روش ماشین بردار پشتیبان با صحت کلی 53/99 درصد، توانایی بیشتری برای تفکیک آتش از غیر آتش دارد. البته در هر دو روش، صحت کلی زیاد است که موید مطلوبیت استفاده از هر دو روش برای تشخیص مخاطره آتش سوزی است. همچنین عملکرد طبقه بندی تصویر تک زمانه بعد از آتش سوزی، بهتر از تصاویر دوزمانه قبل و بعد از آتش سوزی بوده است.
کلید واژگان: طبقه بندی ماشین بردار پشتیبان، طبقه بندی جنگل تصادفی، ماهواره لندست 8، مخاطره آتش سوزیOccurrence of wildfires in forests is one of the important environmental hazards. Remote sensing is one of the useful sources for detecting and monitoring wildfires. The purpose of this paper is to evaluate "during fire" image and "before and after fire" images from Landsat8 satellite in identifying fire areas using Support Vector Machine (SVM) and Random Forest (RF) classifiers. Based on the analysis of the output from the images of the Sacramento area in the state of California, it was found that RF classification method with an overall accuracy of 99.83%, compared to the SVM method with an overall accuracy of 99.53%, has a better ability to distinguish fire from non-fire areas. It should be noted that in both methods, the overall accuracy was considerable and indicated their desirability to wildfire detection. Moreover, the classification results with a “single image” input during a fire were better than the “difference image” input.
Keywords: wildfire detection, Support Vector Machine (SVM), Random Forest (RF), Landsat 8 -
برآورد میزان زیست توده در توده های جنگلی با روش های سنجش از دوری اهمیت بسیاری دارد. هم زمان نبودن دریافت داده های ماهواره ای و اطلاعات میدانی و کاربرد معادلات آلومتریک جهانی، برای محاسبه وزن زیست توده درختان جنگلی داخل کشور، از مهم ترین دلایل عدم قطعیت در نتایج و تحلیل های حاصل از مطالعات مشابه قبلی به شمار می روند. به حداقل رساندن این مشکلات و بررسی قابلیت و عملکرد داده ها در توسعه مدل مناسب برآورد زیست توده جنگل، در منطقه بانکول بخش کارزان شهرستان سیروان، استان ایلام، با استفاده از داده های راداری ماهواره سنتینل 1، اخذشده در تاریخ 6 تیرماه 1396، هدف این تحقیق بود. اندازه قطر میانگین تاج پوشش درختان در 53 قطعه نمونه زمینی مربعی، مربوط به فرم رویشی شاخه زاد، به ابعاد 30×30 متر که در بازه زمانی 2 تا 20 خرداد 1396، به کمک دستگاه موقعیت یاب جهانی تفاضلی و به روش تعیین موقعیت کینماتیک آنی روی زمین اجرا و برداشت شدند، وارد روند برآورد زیست توده شد. میانگین زیست توده برداشت شده میدانی 10.63 تن درهکتار بود. پس از استخراج ویژگی های راداری، آن دسته از ویژگی ها که بیشترین میزان همبستگی را با مقادیر زیست توده داشتند انتخاب و از بین آنها، با به کارگیری الگوریتم ژنتیک و با استفاده از دو مدل رگرسیون K نزدیک ترین همسایه و رگرسیون بردار پشتیبان، مناسب ترین ترکیب ویژگی ها شناسایی و سپس، مقادیر زیست توده مدل سازی شد. اعتبارسنجی مدل ها با استفاده از 26 قطعه نمونه تست، انجام گرفت. همبستگی بین ویژگی های حاصل از داده های راداری و مقادیر زیست توده نشان داد که ویژگی های VH، Mean VV، Mean VV GLCM (Correlation) و Mean VH GLCM (Dissimilarity) بیشترین حساسیت را به مقادیر زیست توده داشتند. استفاده از مدل های رگرسیون نشان داد که روش رگرسیون بردار پشتیبان، با RMSE نسبی 0.08، از روش رگرسیون K نزدیک ترین همسایه، با RMSE نسبی 0.10، دقیق تر عمل کرده است. از بین ترکیب های ویژگی مورد بررسی نیز، بهترین ترکیب در حالت استفاده از رگرسیون K نزدیک ترین همسایه، دارای RMSE به میزان تقریبی 0.99 تن درهکتار (معادل10%) و ضریب تعیین 0.23 و در حالت استفاده از رگرسیون بردار پشتیبان، دارای RMSE به میزان 0.87 تن درهکتار (معادل 8%) و ضریب تعیین 0.14 بود. مدل های نهایی حاصل از ترکیب ویژگی های بهینه استخراج شده از داده راداری در طول موج باند C و روش های رگرسیونی پارامتری و غیرپارامتری مورد بررسی در این تحقیق به تنهایی قادر به بهبود اثر اشباع شدگی در داده، برای برآورد زیست توده در جنگل های مورد مطالعه، نبودند و منجر به پیشنهاد مدل برآوردکننده ای با صحت قابل قبول نشد.
کلید واژگان: زیست توده جنگل شاخه زاد بلوط زاگرس، داده راداری سنتینل 1، الگوریتم ژنتیک، K نزدیک ترین همسایه، رگرسیون بردار پشتیبانEstimating the biomass values in forests stands through remote sensing is important. It has been reported that the major reasons of uncertainty are the lack of concurrency in satellite data and field information as well as the use of global allometric equations for estimating the weight of biomass of forest trees inside the country. Minimizing the above problems and the investigation of data performance in developing appropriate model for estimating the forest biomass in the Bankoll region of Karazan District of Sirvan County in Ilam province using Sentinel-1 satellite data in 27th of June, 2017 was the main goal of this study. Average size of the trees crown in 53 rectangular plots related to the coppice growth form with dimensions of 30×30 mwhich during 23 may 2017 to 10 June 2017 through applying DGPS by RTK method have been implemented on the ground were entered in the process of estimation the value of biomass. The average harvested field biomass was 10.63 Mg ha-1. After extraction of radar features, those features which had the greatest correlation with the values of biomass were selected using genetic algorithm by two models including K-Nearest Neighbor (K-NN) regression and Support-Vector Regression (SVR), then the most appropriate combination was identified and the biomass values were modelled. Models were validated using 26 test plots. Correlation of features obtained from radar data and the value of biomass indicated that features of VH، Mean VV، Mean VV GLCM (Correlation) and Mean VH GLCM (Dissimilarity) had the greatest sensitivity towards the value of biomass. Using regression models indicated that SVR model (Relative RMSE of 0.08) was more precise compared with K-NN regression (relative RMSE of 0.10). The best combination in the use of K-NN regression model with a relative RMSE of almost 0.99 Mg ha-1 (equal to 10%) and the coefficient of determination (R2) of 0.22 and the best combination when using SVR model was a relative RMSE of 0.87 Mg ha-1 (equal to 8%) and the R2 of 0.14. The results indicated that the final models, obtained from the optimal features extracted from radar data in the wavelength of C band and used parametric and non-parametric regressional methods in this research, were not abled to improve the saturated effect in data for estimation of biomass in the studied forests and it was not resulted in presenting an estimating model with an acceptable accuracy.
Keywords: Forest biomass, Sentinel-1 radar data, Genetic Algorithm (GA), K-Nearest Neighbor (K-NN), Support Vector Machine (SVM) -
برای کاهش خطرات احتمالی و مدیریت اراضی، ترسیم نقشه حساسیت زمین لغزش، در مناطق مستعد ضروری است. هدف اصلی این پژوهش، ارزیابی کارایی الگوریتم ماشین بردار پشتیبان (SVM) در پهنه بندی حساسیت زمین لغزش حوضه آبریز اهرچای در شمال غرب ایران، است. رخداد زمین لغزش به عنوان یکی از مهم ترین مسایل و مخاطرات محیطی این حوضه به شمار می آید. در ابتدا زمین لغزش های منطقه مطالعاتی با استفاده از تصاویر ماهواره ای گوگل ارث مربوط به تابستان 1396 شناسایی شدند و پس از بازدیدهای میدانی متعدد برای شناسایی و مطابقت با واقعیت، نقشه پراکنش زمین لغزش ها ترسیم گردید. در حدود 200 مورد زمین لغزش در حوضه آبریز اهرچای شناسایی شد. 70 درصد از زمین لغزش ها برای آموزش مدل و 30 درصد از آنها برای اعتبارسنجی مدل مورد استفاده قرار گرفت. برای تهیه نقشه حساسیت زمین لغزش با استفاده از الگوریتم ماشین بردار پشتیبان از 14 معیار موثر در وقوع زمین لغزش، شامل ارتفاع، جهت و زاویه شیب، تحدب دامنه، طول دامنه (LS)، شاخص رطوبت توپوگرافی (TWI)، عمق دره (VD)، لیتولوژی، فاصله از گسل، کاربری اراضی، شاخص NDVI، فاصله از آبراهه، توان رودخانه (SPI) و بارش استفاده شد. درنهایت نقشه حساسیت زمین لغزش در 5 کلاس بسیار زیاد، زیاد، متوسط، کم و بسیار کم تهیه گردید. برای ارزیابی عملکرد این الگوریتم از منحنی (ROC) و سطح زیرمنحنی (AUC) استفاده شد. نتایج ارزیابی 4 تابع از الگوریتم ماشین بردار پشتیبان نشان داد که تابع پایه شعاعی (RBF) با سطح زیرمنحنی 988/0 = AUC و 958/0= AUC به ترتیب برای داده های آموزشی و صحت سنجی، در پهنه بندی حساسیت زمین لغزش های منطقه مطالعاتی بهترین عملکرد را دارد. همچنین به دلیل قدرت تشخیص بالای آزمون، منحنی ROC بالای قطر مربع قرار می گیرد و بنابراین به حالت ایده آل نزدیک تر می باشد. نتایج پهنه بندی نیز نشان داد که 61/26 درصد از اراضی منطقه که عمدتا در غرب و بالادست حوضه و بخش های جنوبی آن واقع شده اند در کلاس با حساسیت زیاد و بسیار زیاد قرار گرفتند.
کلید واژگان: پهنه بندی حساسیت زمین لغزش، الگوریتم ماشین بردار پشتیبان (SVM)، تابع پایه شعاعی (RBF)، حوضه آبریز اهرچایIntroductionLandslides are one of the most important geological hazards worldwide (Chen et al., 2018). Despite advances in science and technology, these events continue to result in economic, human, and environmental losses worldwide (Alimohammadlou, Najafi, & Yalcin, 2013). Globally, landslides cause about 1200 deaths and 3.5 billion dollars of loss each year (Zhang, Han, Han, Li, Zhang, & Wang, 2019). About 66 million people live in landslide-prone areas (Chen et al, 2018). Landslide susceptibility (LS) mapping is essential in delineating landslide prone areas in mountainous regions. Landslide susceptibility is the propensity of soil or rock to produce various types of landslides (Chalkias Ferentinou, & Polykretis, 2014). From the beginning of the 1970s, the interest of both geoscientists and engineering professionals in LS zonation and the increasing emphasis on the use of Geographic Information Systems (GIS) technology led to the development of many methods such as weights-of-evidence model (Karami, 2012; Wang, Guo, Li, He, & Wu, 2019) logistic regression (Pham, Pradhan, Bui, Prakash, & Dholakia, 2016; Raja, Çiçek, Türkoğlu, Aydin, & Kawasaki, 2017), artificial neural networks (Chauhan, Sharma, Arora, Gupta, 2010؛ Tsangaratos & Benardos, 2014), neuro-fuzzy (Aghdam, Varzandeh, & Pradhan, 2016; Lee, Hong, & Jung, 2017; Chen et al., 2019). Support vector machines model (SVM) is currently a new pattern recognition method based on statistical learning theory, which shows unique advantages in solving small sample, nonlinear and high dimensional pattern recognition problem (Yao, Tham, & Dai, 2008).Iran has vast mountainous areas that make up more than half of the country due to geological characteristics, seismicity, rainfall and climate change and topographic conditions are among the countries that have experienced numerous landslides. In the meantime, Aharchai basin is located in northwest of Iran. This basin is prone to landslide due to topographic and geological conditions, slopes and other factors. Such conditions reveal the necessity of zoning sensitivity and assessing the potential for landslides in planning and implementing development plans. In this study, SVM model and GIS technology are applied to the evaluation of the susceptibility of landslides for the Ahar-Chai Basin. In addition, the purpose of this study is to evaluate the performance of support vector machine algorithm functions.
Materials and MethodsSupport Vector Machine (SVM) is currently a new pattern recognition method based on statistical learning theory, which shows unique advantages in solving small sample, nonlinear and high dimensional pattern recognition problems (Yao et al, 2008). SVM was first proposed by Vapnik (1995). Landslide inventory mapping is an important step in landslide susceptibility assessment. In this study, historical records, satellite images, field surveys, and Google Earth® were used to analyze landslide locations. Landslide conditioning factors used in the current study are slope angle, slope aspect, altitude, valley depth, NDVI, rainfall, distance to rivers, lithology, distance to faults, land use, topographic wetness index (TWI), stream power index (SPI), plan curvature, and profile curvature. Using this DEM, slope degree, slope aspect, altitude, plan curvature, profile curvature, were produced. In this study, a Landsat/ETM+ satellite image and sentinell were used for the year 2017. The plan curvature map was produced using a system for automated geoscientific analyses (SAGA) GIS. In this research, a support vector machine with four types of kernel classifiers such as linear, polynomial, radial basis function (RBF) and sigmoid were used in GIS for landslide susceptibility mapping in the study area. A total of 200 landslides were mapped using satellite image and subsequently were verified through field checking. Validation is an essential part of landslide susceptibility and landslide susceptibility maps are meaningless without validation. At present, the area under curve (AUC) method is used by most scholars in the prediction capability of a landslide susceptibility model. The AUC displays the success rate and prediction rate percentage of the model and is obtained for both the training data and the validation data. In general, the larger the AUC value, the better is the model (Intarawichian & Dasananda 2011; Lee and Dan, 2005).
Results and DiscussionIn this study, using the 70% of the landslides as training dataset, the success rate curve was drawn. Using the remaining 30% of the landsides as testing dataset, the prediction rate curve was also drawn. Susceptibility maps were verified and compared using the area under the curve (AUC) method. The success rate curve demonstrated that the AUC for the radial basis, sigmoid, polynomial and linear functions was 0.988, 0.938, 0.652 and 0.506, respectively, and the prediction rate curve showed that the AUC was 0.958, 0.928, 0.642 and 0.543, respectively. Furthermore, results showed that RBF function had the highest accuracy in comparison with other methods. Generally, the three methods showed reasonable accuracy in landslide susceptibility mapping. Results of this study can serve as guidelines to managers and policy makers regarding the prevention and mitigation of landslide hazards. Finally, the landslide susceptibility maps were reclassified into five susceptibility classes: very high, high, moderate, low and very low.
ConclusionThe validation results showed that success rates for four types of function models varied from 98% to 50%. Similarly, results of prediction rates showed that RBF (98%) and sigmoid (93%) functions performed better than other types of functions (polynomial = 65%, and linear = 50%). The result of zonation show that 26.61 % of study area were located in high and very high susceptibility classes.
Keywords: Landslide, Susceptibility Zoning, Support Vector Machine (SVM), Algorithm, Radial Basis Function, Ahar-Chai Basin, NW Iran -
بررسی موجودی زمین لغزش ها، تیپولوژی و توزیع فضایی آنها ابزارهای ضروری برای تحدید نشانه های فضایی و زمانی زمین لغزش ها است. هدف تحقیق حاضر بررسی حساسیت زمین لغزش حوضه کن با استفاده از شاخص آنتروپی و الگوریتم ماشین های پشتیبان بردار است. معیارهای موثر در بروز زمین لغزش در این تحقیق شامل توپوگرافی، شیب، جهت شیب، کاربری اراضی، لیتولوژی، فاصله از گسل، فاصله از آبراهه و فاصله از جاده هستند. لایه های مکانی پارامترهای اثرگذار به پایگاه مکانی داده وارد شده و استاندارد سازی معیارها انجام شد. هر یک از پارامترها با توجه به میزان تاثیر بر وقوع مخاطره لغزش، طبق نظرات کارشناسی امتیازدهی و به صورت رستری به عنوان لایه های اصلی در پهنه بندی حساسیت لغزش با استفاده از شاخص آنتروپی بکار گرفته شده اند. ماتریس آنتروپی برای هر یک از عوامل محاسبه و سپس در محیط GIS نقشه پهنه بندی حساسیت لغزش منطقه، تهیه شده است. در الگوریتم پشتیبان بردار از تابع حلقوی استفاده شده بر اساس این الگوریتم هر یک از لایه های موثر در بروز زمین لغزش وزن دهی شده و سپس لایه ها هم پوشانی شده و نقشه حساسیت زمین لغزش بر اساس الگوریتم پشتیبان بردار تهیه شده است. جهت اعتبار سنجی مدل ها، با استفاده از 30 درصد نقاط لغزشی، منحنی ROC، ترسیم و مساحت زیر منحنی (AUC) محاسبه شده است. نتایج اعتبار سنجی نشان داده که الگوریتم ماشین های پشتیبان بردار ((SVM-SIGMOID (AUC = 0.91) در برآورد حساسیت زمین لغزش در منطقه مورد مطالعه نسبت به مدل شاخص آنتروپی (AUC= 0.86) از صحت بیشتر و قابلیت اعتماد بالاتری برخوردار است.کلید واژگان: حساسیت زمین لغزش، حوضه کن، شاخص آنتروپی، الگوریتم ماشین پشتیبان بردارLandslide susceptibility mapping (LSM) is a proper method to predicting landslide hazard risk in order to reducing its consequences. We prepared the LSM mapping of Kan basin by used of index of Entropy model and SVM-S. The validation of the produced maps is evaluated by used of the area under the curve ROC. Study area The study area is located on the north west of Tehran Province, between 35°46′ and 35°58′ N latitude and 51°10′ to 51°23′ E longitude. The area of the basin is 204.385 km2 (Figure. 2 (a)). Material and methods In the present study we used of 8 parameters consisting the distance from river, distance from fault, distance from road, land use, rainfall, aspect, slope, elevation, and lithology. Distance from the road was computed from the road at the interval 200 m using ArcGIS software (Fig.2f). The distance from road and distance from fault was calculated in same way (Figure. 2 d, h). The land use map has reclassified to 5 class (Figure.2g). The lithology parameter has been obtained by the reclassification of the geological map of Tehran at the scale of 1:100000 (Figure.2h). The digital elevation model (DEM) was extracted from the 1:50000 scale topographic maps. The parameters of slope degree (whit 5 classes), aspect layer were produced by used of the digital elevation model. (Figure.2c & d). The topography layer was reclassified into 5 class (Fig.2a). the introduced layers were used in this study according to the type of the models to produce of LSM maps. Entropy index Entropy is a measurement of the instability, imbalance, and uncertainty of a system (yang et al, 2010). The equations used to calculate the information coefficient dj representing the weight value for the parameter as a whole, are given as follows: pij=xij/(∑_(i=1)^m▒xij ) (1) (2) Ej= -k+∑_(i=1)^m▒pij ln(pij) K=〖c(lnm)〗^(-1) (3) ((4 dj = EJ – 1 After calculating the total weight (wj) using Equation 5, the landslide risk of the case study is evaluated: (5) Hi = ∑_(i=1)^m▒xij In equation 5, H is the coefficient of landslide risk, wj is the final weigh of all the factors and Xij is the weight of each factor (zongji et al, 2010). The final landslide susceptibility map was prepared by the summation of weighted products of the secondarily parametric maps. H = (S×0/54) + (Df × 0/74) + (E × 0/082) + (Dr × 0/51) + (Dri × 0/51) + (A × 0/066) + (lu × 0/16) + (Lt × 0/0064) Support Vector Machine SVM algorithm as one of the most popular methods for solving regression problems has had significant results in landslide sensitivity zoning. consider a set of linear separable training vectors Xi (i = 1, 2, . . ., n). The training vectors consist of two classes, which are denoted as Yi = ±1. The goal of SVM is to search an n-dimensional hyperplane differentiating the two classes by their maximum gap. Mathematically, it can be expressed as: 1⁄2=∥w^2∥ (6) Y_i=((W.X_i )+)≥1 (7) A Lagrangian formulation is introduced to solve the problem (equation 8). Thus, the goal is now to minimize the Lagrangian L with to W and b and maximize with respect to λi. For this reason, we used of following equation: L=1/2∥w^2∥-∑_(i=1)^n▒Y^i ((W.X_i )+b)-1) (8) four types of SVM is existed: linear, polynomial, radial basis function (RBF) and sigmoid. The mathematical representation of each kernel (linear, polynomial, radial basis function, and sigmoid) is listed below, respectively: K (X_j 〖.X〗_i )= X_j^i.X_j K (X_j 〖.X〗_i )=(γ∙ X_j^i+r) ._ γ>0 K (X_j 〖.X〗_i )=e^(-γ〖(X_i-X_j)〗^2 ) ._ γ>0 tanh (γ .X_i^T. X_j+r) γ, d, and r are user-controlled parameters, as their correct definition significantly increases the accuracy of the SVM solution. In the present research we used of Sigmoid function. To measure the validation of the models, we used of a relative ROC by comparing the existing landslide location with the two landslide susceptibility maps. The success rate curves were obtained by used of the 70% training dataset (29 landslide locations). ROC curve (AUC) represents the quality of the probabilistic model (it is ability to predict the occurrence or nonoccurrence of an event). Result and discussion The area of the low, moderate, and high classes based on the SVM model were found to be 109.485 km2, 38.7 km2, and 56.2 km2, respectively, whereas based on landslide susceptibility map by used of index of entropy, the 118.175 of the study area has low susceptibility risk, and the moderate, and high susceptibility zones have the 41.2 km2, 45.02 km2 of the study area, respectively (Fig. 3). Based on the entropy model, the 8 numbers of the landslides points located on the high-risk zone and the 8 numbers of the landslide points located on the moderate risk zone and low risk zone have 10 of the landslide points. Based on the LSM map produced by the SVM-S model, the 13 numbers of the landslide points located on the high risk zone and the 5 number of the landslide point located on the moderate-risk zone. The ROC plot assessment reveals that the AUC in the susceptibility map based on the index of entropy model was 0.86 and the AUC in the susceptibility map based on the Logistic Regression model was 0.91 (Fig. 5). Conclusion The high-risk zone on the LSM map produced by the SVM model is located in the north east and the west and south of the basin and based on the LSM map produced by the Entropy model is located in the north east and the south of the basin. The LSM map has produced in a regional scale, so further study need be carried out at the site-specific level to determine the exact extent site of the slope instability. Keywords: LSM, Index of Entropy model, Kan basin, Support Vector Machine, Sigmoid function, SVM-SIGMOID.Keywords: Landslide Susceptibility Map (LSM), Index of Entropy model, Kan basin, Support vector machine (SVM)
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.