Modeling the Above-Ground Biomass Estimation in Zagros Oak Coppice Forests Using Radar Data of Sentinel-1 Satellite
Estimating the biomass values in forests stands through remote sensing is important. It has been reported that the major reasons of uncertainty are the lack of concurrency in satellite data and field information as well as the use of global allometric equations for estimating the weight of biomass of forest trees inside the country. Minimizing the above problems and the investigation of data performance in developing appropriate model for estimating the forest biomass in the Bankoll region of Karazan District of Sirvan County in Ilam province using Sentinel-1 satellite data in 27th of June, 2017 was the main goal of this study. Average size of the trees crown in 53 rectangular plots related to the coppice growth form with dimensions of 30×30 mwhich during 23 may 2017 to 10 June 2017 through applying DGPS by RTK method have been implemented on the ground were entered in the process of estimation the value of biomass. The average harvested field biomass was 10.63 Mg ha-1. After extraction of radar features, those features which had the greatest correlation with the values of biomass were selected using genetic algorithm by two models including K-Nearest Neighbor (K-NN) regression and Support-Vector Regression (SVR), then the most appropriate combination was identified and the biomass values were modelled. Models were validated using 26 test plots. Correlation of features obtained from radar data and the value of biomass indicated that features of VH، Mean VV، Mean VV GLCM (Correlation) and Mean VH GLCM (Dissimilarity) had the greatest sensitivity towards the value of biomass. Using regression models indicated that SVR model (Relative RMSE of 0.08) was more precise compared with K-NN regression (relative RMSE of 0.10). The best combination in the use of K-NN regression model with a relative RMSE of almost 0.99 Mg ha-1 (equal to 10%) and the coefficient of determination (R2) of 0.22 and the best combination when using SVR model was a relative RMSE of 0.87 Mg ha-1 (equal to 8%) and the R2 of 0.14. The results indicated that the final models, obtained from the optimal features extracted from radar data in the wavelength of C band and used parametric and non-parametric regressional methods in this research, were not abled to improve the saturated effect in data for estimation of biomass in the studied forests and it was not resulted in presenting an estimating model with an acceptable accuracy.
-
Assessing the performance of a handheld mobile laser scanner to estimate tree height
Seyed Ali Naghibi Rad, Ali Asghar Darvish Sefat, Parviz Fatehi *, Manochehr Namiranian, Mohammad Saadat Seresht, Mehdi Boroumand
Journal of Forest and Wood Products, -
Forest type mapping using PRISMA imagery in the Kheyrud forest
Marjan Firoozy Nejad, Parviz Fatehi *, Aliasghar Darvishsefat, Vahid Nasiri
Journal of Forest and Wood Products,