genetic algorithm (ga)
در نشریات گروه علوم پایه-
Vehicular ad-hoc networks (VANET) represent an improved iteration of Wireless Sensor Networks (WSN) with mobile sensory nodes situated within vehicles. The Vehicular Adhoc Networks hold a crucial position within smart city applications as inter-vehicle communication is deemed indispensable for maintaining the technological efficiency of the city. Despite the benefits provided by VANET, it encounters numerous challenges and drawbacks within the context of smart city applications. One such challenge pertains to the security and privacy principles of VANET. Privacy and security emerge as principal concerns associated with VANET, prompting multiple researchers to propose security solutions over the past decade. The present research endeavor focuses on elevating the quality of service (QoS) by offering an enhanced level of security for data communication. This security enhancement is achieved through the use of blockchain technology and the integration of Elliptical Curve Cryptography with secure hash functions to safeguard data communication from node to Mobile Control Unit (MCU). Furthermore, the proposed research work presents an efficient routing mechanism for data between mobile nodes and the Control Unit by employing neuro fuzzy logic to identify the optimal path from the source node to the Mobile Control Unit (MCU). The proposed work is compared with existing cryptographic methodologies as well as state-of-the-art routing path optimization algorithms, namely Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Memetic Algorithm (MA), and Honey Bee Optimization (HBO), in order to establish its superiority in terms of computational time, throughput, packet delivery ratio, and accuracy.Keywords: Vehicular Adhoc Networks, Wireless Sensor Networks, Quality Of Service, Elliptical Curve Cryptography, Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Memetic Algorithm (MA), Honey Bee Optimization (HBO) Algorithm
-
International Journal of Mathematical Modelling & Computations, Volume:12 Issue: 4, Autumn 2022, PP 299 -312
The adaptive fuzzy neural inference system (ANFIS) is an efficient estimation model not only among fuzzy neural systems but also among other types of machine learning techniques. Despite its acceptance among researchers, ANFIS cited limitations such as inefficiencies in large data and data problems, cost of computation, processing time and optimization, and error training. The ANFIS structural design is a complex optimization problem that can be improved using meta-heuristic algorithms. In this study, to optimize and reduce errors, a new meta-heuristic algorithm inspired by nomadic migration was designed and used to design an adaptive fuzzy neural system called the Qashqai nomadic meta-heuristic algorithm. The results of the hypothesis test showed that the Qashqai optimization algorithm is not defeated by the genetic algorithm and particle swarm and works well in terms of convergence to the optimal answer. In this hybrid algorithm, random data set are first generated and then trained by designing a basic fuzzy neural system. Subsequently, the parameters of the basic fuzzy system were adjusted according to the modeling error using the meta-heuristic optimization algorithm of Qashqai nomads. The fuzzy nervous system with the best values was obtained as the final result.The main achievements of the study are:• Improving ANFIS accuracy using a novel meta-heuristic algorithm.• Fix and remove some problems and Limitations in the Anfis model, such as inefficiencies in large data, cost of computation, Answer accuracy, and reduce errors.• Comparing the proposed ANFIS+QA with some recent related work such as ANFIS+QA and ANFIS+Pso.
Keywords: Optimization, Adaptive Neural Fuzzy Inference System (ANFIS), Meta-heuristic Algorithm, Genetic Algorithm (GA), Particle swarm algorithm (PSO), Qashqai algorithm (QA) -
یکی از فرایند های اصلی در صنایع پالایشی صنعت نفت، استخراج هیدروکربن های آروماتیک از هیدروکربن های آلیفاتیک است. بر این اساس پیش بینی دقیق رفتار فازی این سامانه ها می تواند باعث بهبود استخراج مایع مایع شود. در این مطالعه، رفتار ترمودینامیکی فازی سامانه سه جزیی هیدروکربن های آلیفاتیک و آروماتیک به همراه مایع های یونی توسط سامانه استنتاجی فازی عصبی تطبیقی (ANFIS) و شبکه عصبی پرسپترون چند لایه (MLP) پیش بینی شد. ورودی های مدل در مدل سازی سامانه استخراج مایع مایع، نسبت مولی ترکیب های آلیفاتیک، آروماتیک و مایع های یونی در خوراک و هم چنین جرم مولکولی آ ن ها و دمای سامانه استخراج در نظر گرفته شد و همچنین خروجی مدل نیز نسبت مولی ترکیب های آلیفاتیک و آروماتیک در فاز غنی از آلکان و نسبت مولی ترکیب های آروماتیک و مایع های یونی در فاز غنی از مایع های یونی در نظر گرفته شد. پارامترهای طراحی این شبکه های عصبی ازجمله تعداد نرون و شعاع خوشه چینی شبکه های MLP و ANFIS به منظور بهتر شدن دقت پیش بینی آن ها، با روش بهینه سازی تکاملی الگوریتم ژنتیک (GA) بهینه شدند. مقایسه دقت پیش بینی شبکه های ANFIS و MLP با داده های آزمایش بر اساس پارامترهای آماری R2 ، RMSD و MAD برای مدل ANFIS به ترتیب 9996/0، 0190/0 و0129/0 و برای مدل شبکه عصبی MLP به ترتیب 9996/0، 0204/0 و0127/0 به دست آمد. همچنین مقایسه ای بین دقت پیش بینی شبکه های ANFIS و MLP با مدل ترمودینامیکی NRTL برای دو سامانه گوناگون استخراج مایع مایع انجام شد، میانگین RMSD آن ها برای دو سامانه استخراج به ترتیب 0093/0، 0110/0 و 0113/0 به دست آمد. نتیجه های پارامترهای آماری نشان دهنده این است که این شبکه ها در پیش بینی رفتار ترمودینامیکی تعادل مایع مایع با دقت به نسبت مناسبی دارند و روش موثری هستند.
کلید واژگان: استخراج مایع مایع، سامانه استنتاجی فازی عصبی تطبیقی (ANFIS)، شبکه عصبی پرسپترون چند لایه (MLP)، الگوریتم ژنتیک (GA) و مایع های یونیOne of the main processes in the refining industries of the oil industry is the extraction of aromatic hydrocarbons from aliphatic hydrocarbons. Accordingly, accurate prediction of the phase behavior of these systems can improve liquid-liquid extraction. In this study, the phase thermodynamic behavior of the ternary system of aliphatic and aromatic hydrocarbons with ionic liquids is predicted by the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Multilayer Perceptron (MLP)neural network. The model inputs were considered in modeling the liquid-liquid extraction system, the molar ratio of aliphatic, aromatic, and ionic compounds in the feed, as well as the molecular mass of the ions and the temperature of the extraction system, and the model output was the molar ratio. Aliphatic and aromatic compounds in the alkane-rich phase and molar ratio of aromatic compounds and ionic liquids in the iron-rich phase were considered. The design parameters of these neural networks, including the number of neurons and the clustering radius of the MLP and ANFIS networks, were optimized by the genetic algorithm evolution method (GA) in order to improve their prediction accuracy. Comparison of prediction accuracy of ANFIS and MLP networks with experimental data based on statistical parameters R2, RMSD, and MAD for ANFIS model was calculated 0.9999, 0.0190, and 0.0129 respectively and for MLP neural network model was 0.996, 0.0204, and 0.0127 respectively. Also, a comparison was made between the prediction accuracy of ANFIS, MLP networks and the NRTL thermodynamic model for two different liquid-liquid extraction systems, their RMSD for the two extraction systems were 0.0093, 0.0110, and 0.0113, respectively. The results of statistical parameters show that these networks have relatively good accuracy in predicting the thermodynamic behavior of liquid-liquid equilibrium and are an effective method.
Keywords: Liquid-liquid Extraction, Adaptive neuro-fuzzy inference system (ANFIS), Multi-Layer Perceptron (MLP) neural network, Genetic algorithm (GA), Ionic liquids -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 2333 -2350
The estimation of statistical parameters for multivariate data can lead to wasted information if the missing values are neglected, which in return will lead to inaccurate estimates, therefore the incomplete data must be estimated using one of the statistical estimation methods to obtain accurate results and thus obtaining good estimates for the parameters.
Missing values is considered one of the most important problems that researchers encounter and the most common, and in the case of the multivariate skew normal distribution (MSN) the presence of this problem will lead to weak and misleading conclusions for the research, which calls for treating this problem and in return obtaining efficient and convincing results. The aim of this paper is to estimate the missing values for the multivariate skew normal distribution function using the K-nearest neighbors Imputation (KNN). After estimating the missing values, the parameters are estimated using Genetic Algorithm (GA), and the Bayesian Approach was also used to estimate the missing values and find the estimates for the parameters. Using simulation, the Mean Squared Error (MSE) was calculated to find out which method is the best for estimation by comparing the two methods using different sample sizes (400, 600, and 800). The (GA) that is based on the (KNN) algorithm to estimate the missing values proved to be better and more efficient than the Bayesian Approach in terms of the results.Keywords: Multivariate Skew Normal distribution (MSN), K-Nearest Neighbors Imputation (KNN), Genetic Algorithm (GA), Bayesian Approach, Mean Squared Error (MSE) -
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 1, Winter-Spring 2022, PP 1709 -1720
Our research includes studying the case 1//F(∑Ui,∑Ti,Tmax) minimized the cost of a three-criteria objective function on a single machine for scheduling n jobs. and divided this into several partial problems and found simple algorithms to find the solutions to these partial problems and compare them with the optimal solutions. This research focused on one of these partial problems to find minimize a function of sum cost of (∑Ui) sum number of late job and (∑Ti) sum Tardiness and (Tmax) the Maximum Tardiness for n job on the single machine, which is NP-hard problem, first found optimal solutions for it by two methods of Complete Enumeration technique(CEM) and Branch and Bounded ((BAB)). Then use some Local search methods(Descent technique(DM), Simulated Annealing (SA) and Genetic Algorithm (GA)), Develop algorithm called ((A)) to find a solution close to the optimal solution. Finally, compare these methods with each other.
Keywords: Descent Method(DM), Genetic Algorithm(GA), Maximum tardiness, Multi-objective optimization, Simulated annealing ((SA)), Total Number of Late job, Total Tardiness -
Traditionally, the statistical quality control techniques utilize either an attributes or variables product quality measure. Recently, some methods such as three-level control chart have been developed for monitoring multi attribute processes. Control chart usually has three design parameters: the sample size (n), the sampling interval (h) and the control limit coefficient (k).The design parameters of the control chart are generally specified according to statistical or/and economic criteria. The variable sampling interval (VSI) control scheme has been shown to provide an increase to the detecting efficiency of the control chart with fixed sampling rate (FRS). In this paper a method is proposed to conduct the economic-statistical design for variable sampling interval of the three-level control charts. We use the cost model developed by Costa and Rahim and optimize this model by genetic algorithm approach. We compare the expected cost per unit time of the VSI and FRS 3-level control charts. Results indicate that the proposed chart has improved performance.Keywords: three-level control chart, the variable sampling interval (VSI) control scheme, economic- statistical design (ESD), genetic algorithm (GA)
-
روغن موتور ها ویژگی های فیزیکی و شیمیایی بسیاری دارند که از آن ها می توان به گرانروی، شاخص گرانروی، نقطه ی اشتعال، نقطه ی ریزش و غیره اشاره کرد. گرانروی یکی از مهم ترین ویژگی های روغن بوده و عامل بسیار مهمی در روغن های صنعتی به حساب می آید، زیرا تمام ویژگی های طراحی شده برای روغن های صنعتی به گرانروی آن ها ارجاع داده می شود. تغییر گرانروی با دما با شاخص گرانروی اندازه گیری و بیان می شود و برای تشخیص نوع روغن، از این شاخص استفاده می شود. هر چه این شاخص گرانروی بزرگ تر باشد نشان دهنده این است که گرانروی روغن نسبت به تغییرهای دما تغییر کم تری دارد. درنتیجه با توجه به اهمیت این شاخص در روغن های روان کننده، و با توجه به این که شاخص گرانروی در روغن موتور ها تابعی از ترکیب شیمیایی روغن است، در این پژوهش، با استفاده از یک فناوری طیف سنجی ساده مثل فروسرخ تبدیل فوریه (FT-IR)، آنالیز روغن موتور ها صورت گرفت، سپس به وسیله ی روش انتخاب متغیر الگوریتم ژنتیک، GA، عدد موج های مهم و تاثیر گذار بر شاخص گرانروی روغن موتور ها مشخص شد و معلوم شد ترکیب های دارنده ی گروه های عاملی آلکیل هالید، آلکن، نیترو، اسید، آلکان، آلکین و الکل بر شاخص گرانروی روغن موتور ها تاثیر گذار هستند. مدل سازی شاخص گرانروی روغن موتور ها به کمک روش برازش خطی چند متغیره (MLR) صورت گرفت. از روش های پیش پردازش گوناگونی مانند روش متمرکز کردن به میانگین و مقیاس گذاری پیش از روش های MLR وGA-MLR نیز استفاده شد. نتیجه های به دست آمده از مدل سازی با پارامتر های گوناگونی مانند ضریب برازش (R2) و ریشه ی دوم متوسط خطا ها (RMSE) سنجیده شد. مقدارهایR2 و RMSE به دست آمده با استفاده ازGA-MLR، به ترتیب 998/0و 954 /0 به دست آمدند
کلید واژگان: روغن موتور، شاخص گرانروی، طیف سنجی فروسرخ تبدیل فوریه، الگوریتم ژنتیک، برازش خطی چند متغیرهMotor oils have different physicochemical properties, namely viscosity, viscosity index, flash point, pour point, etc. Viscosity is one of the important properties of motor oils since all the properties of industrial lubricants are referred to as their viscosities. The changes in viscosity with variation in temperature are regarded as the viscosity index. The greater the viscosity index, the lower the chances of the viscosity of motor oil with temperature and vice versa. According to the importance of viscosity index in lubricants and because the viscosity index of lubricants is dependent on the chemical composition of motor oils, thus in this study, a simple spectroscopic technique like Fourier Transform InfraRed (FT-IR) spectroscopy was used to analyze the Behran motor oils. The important wavenumbers that affect the viscosity indices were identified by using the Genetic Algorithm (GA) as a variable selection method. By using this method, some functional groups like Alkyl halides, Alkene, Nitro, Acid, Alkane, Alkyne, and Alcohol were recognized that affect the viscosity index of motor oils. Modeling the viscosity index of motor oils was done by Multivariate Linear Regression (MLR) method. Various data preprocessing techniques like Mean Centering and Auto-scaling were operated before the MLR and GA-MLR techniques. The results of modeling were evaluated by using different parameters like regression coefficients (R2) and Root Mean Square Error (RMSE). The values of R2 and RMSE, obtained by the GA-MLR were 0.998 and 0.954 respectively.
Keywords: Engine oils, Viscosity Index, FT-IR, Genetic algorithm (GA), Multivariate Linear Regression (MLR) -
در این مطالعه تلاش شده است تا با برقراری ارتباط میان باندهای سنجنده لندست-8 و داده های میدانی تهیه شده از شوری آب رود کارون، مدلی برای شوری آب ارائه گردد. برای این منظور 102 داده ی میدانی که شامل مقادیر هدایت الکتریکی هستند از تاریخ ژوئن 2013 تا جولای 2018 از رود کارون برداشت شده است؛ و از 36 تصویر ماهواره ای سنجنده لندست-8 بدون ابر برای استخراج انعکاس سطح استفاده شده است. لازم به ذکر است که تفاوت زمانی بین داده های میدانی و تصاویر ماهواره ای حداکثر دو روز است. درنهایت102 داده ی میدانی و انعکاس سطح هفت باند غیرحرارتی سنجنده لندست 8 به نسبت 75 به 25 برای آموزش الگوریتم ها و ارزیابی آن ها تقسیم شده اند. در این مطالعه از الگوریتم ژنتیک استفاده شده است تا علاوه بر پیدا کردن مناسب ترین باندهای سنجنده لندست-8، پارامترهای الگوریتم بردار پشتیبان و تعداد لایه ها و نورون های شبکه عصبی پرسپترون چندلایه را نیز تخمین بزند. در این مطالعه باندهای 1، 2 و 3 سنجنده لندست-8 به عنوان حساس ترین باندها به شوری انتخاب شده است و سپس با بهینه کردن پارامترهای الگوریتم بردار پشتیبان و تعداد لایه ها و نورون های شبکه عصبی چندلایه توسط الگوریتم ژنتیک به ترتیب ضریب تعیین 7/. و 73/0حاصل گردیده است.
کلید واژگان: شوری آب رود کارون، تصاویر ماهوارهای لندست-8، رگرسیون بردار پشتیبان(SVR)، شبکه عصبی پرسپترون چندلایه (MLP)، الگوریتم ژنتیک(GA)IntroductionThe Karun River is the biggest river basin in Iran, which supplies water demands of about 16 cities, several villages, thousands of hectares of agricultural. This river polluted because of domestic and urban sewerage, industrial sources, and irrigation of agricultural land, Hospital sewage and high tide level of Persian Gulf.
Therefore, because of the importance of this river, the water salinity of this river is determined in this study. The traditional methods of determining water salinity are costly in comparison with remote sensing methods.
In the present study, Landsat 8 (OLI) data was used to calculate the water salinity map for Karun River since not only it is free, but it also has an acceptable resolution.Materials and MethodsLandsat 8 (OLI) images were used to calculate reflectance for a pixel and were attained from (US Geological Survey (USGS) 2019). First, radiometric correction was applied to normalize satellite images. This process convert Digital Number into radiance. Second, in order to attain the surface reflectance values, the process of atmospheric correction was applied using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH).
Water salinity was calculate by Iran Water and Power Recourses Development Company. Eight stations are located in the crucial point for EC measuring ALIKALE, GOTVAND, SHOOSHTAR, SHOTEYT, GARGAR, DEZ, AHVAZ, and ABADAN.
Iran Water and Power Recourses Development Company obtained 102 observed EC samples from June 2013 to July 2018 along the Karun River.
The Support Vector Machine was classically used for classification, Support Vector Classification, but extended for using along with regression issue, namely Support Vector Regression.
The results related to the quality of the SVR depend on some factors: the loss function Ɛ, the error penalty factor C and the kernel function parameters.
Usually, radial basis kernel function (RBF), k(x, x΄) = k(x,x΄)=exp〖( -||x-x΄〗 2/σ^2), has been used in remote sensing studies, so, it is implemented in this study. Finally, the Genetic Algorithm (GA) is employed to optimize some parameters including C, Ɛ and σ.
GA is an optimization technique create by Holland (1975) and discussed the mechanism of GA in solving nonlinear optimization problems.
Besides, the Genetic Algorithm (GA) was applied to determine the best performer bands combination. Furthermore, we employ GA to optimize SVR parameters and number of layers and neurons of MLP neural network in order to maximize model accuracy.Results and DiscussionSalinity intrusion is a complex issue in coastal, hot, and dry areas. Currently, remote sensing techniques have been widely used to monitor water salinity changes, ranging from inland river networks to deep oceans. The Karun River basin, with a basin area of 67,000 km^2, is located in the southern part of Iran. The salinity of Karun River has been increasing due to some critical factors, e.g. severe climate condition and regional physiography, industrial sources, domestic and urban sewerage, irrigation of agricultural land, fish hatchery, hospital sewage, and high tide level of Persian Gulf .
This study aimed at building Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models to realize the salinity intrusion through the relationship between reflectance from the Landsat-8 Operational Land Imager images and salinity levels measured in situ. 102 observed samples were divided into 75% training and 25% test.
Besides, the Genetic Algorithm (GA) was applied to determine the best performer bands combination. Furthermore, we employ GA to optimize SVR parameters and number of layers and neurons of MLP neural network in order to maximize model accuracy.
The result showed that the MLP approach was the better model to estimate water salinity along the Karun River network in the study area, which coefficient of determination (R^2) and RMSE of test data is obtained as 0.73 and 390μs 〖cm〗^(-1).
GA analysis proved that bands 1, 2 and 3 are the best for modeling water salinity. In this study, the GA is used to determine the SVR meta-parameters including the loss function Ɛ, the error penalty factor C and σ parameters, which are obtained to be〖1×10〗^(-9), 1099 and 0.96, respectively, and number of layers and neurons of MLP neural network, which are obtained to be 5 and 35, respectively.
The result showed that the MLP approach was the better model to estimate water salinity along the Karun River network in the study area, which coefficient of determination (R^2) and RMSE of test data is obtained as 0.73 and 390μs 〖cm〗^(-1).ConclusionThe present study calculated the relationship between reflectance retrieved from Landsat-8 OLI and water salinity in the Karun River. SVR and MLP models had acceptable operation by considering the large size, geographic complexity of the study domain and the wide range of field data that change between 385 and 4310μs cm^(-1). Augmentation field data is the critical priority work for future study to probe the relationship between water salinity and satellite images.In addition, the contribution of thermal bands can help to increase accuracy of models. Salinity intrusion is a complex issue in coastal and hot and dry areas. Currently, remote sensing techniques have been widely used to monitor water salinity changes, ranging from inland river networks to deep oceans. The Karun River basin, with a basin area of 67,000 km2, is located in the southern part of Iran. The salinity of Karun River has been increasing due to some critical factors, e.g. severe climate condition and regional physiography, industrial sources, domestic and urban sewerage, irrigation of agricultural land, fish hatchery, hospital sewage, and high tide level of Persian Gulf .This study aimed at building Support Vector Regression (SVR) and Multilayer Perceptron (MLP) models to realize the salinity intrusion through the relationship between reflectance from the Landsat-8 Operational Land Imager images and salinity levels measured in situ. A total of 102 observed samples were divided into 75% training and 25% test. Besides, the Genetic Algorithm (GA) was applied to determine the best performer bands combination. Furthermore, we employ GA to optimize SVR parameters and number of layers and neurons of MLP neural network in order to maximize model accuracy. The result showed that the MLP approach was the better model to estimate water salinity along the Karun River network in the study area, which coefficient of determination (R2) and RMSE of test data is obtained as 0.73 and 390μscm-1
Keywords: Water salinity, Landsat-8 satellite image, Support Vector Regression (SVR), Multilayer Perceptron (MLP), Genetic Algorithm (GA) -
International Journal Of Nonlinear Analysis And Applications, Volume:11 Issue: 1, Winter-Spring 2020, PP 207 -224Nowadays, effort estimation in software development is of great value and significance in project management. Accurate and appropriate cost estimation not only helps customers trust to invest but also has a significant role in logical decision making during project management. Different models of cost estimation are presented and employed to the date, but the models are application specific. In this paper, a three-phase hybrid approach is proposed to overcome the problem. In the first phase, features are selected using a combination of genetic algorithm and the perceptron neural network. In the second phase, impact factors are associated to each selected feature using multiple linear regression methods which act as coefficients of influence for each feature. In the last and the third phase, the feature weights are optimized by Imperialist Competitive Algorithm. To compare the proposed model for effort estimation with state-of-the-art models, three datasets are chosen as benchmark, namely COCOMO, Maxwell and Albrecht. The datasets are standard and publicly available for assessment. The experiments show promising results and average performance is improved by the proposed model for MMRE performance criterion on the datasets by 23%, 38% and 35%, respectively.Keywords: Software Development Effort Estimation, Multiple Linear Regression (MLR), Neural Network, Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA), Maxwell, Albrecht, COCOMO
-
The purpose of this work was to predict liquid-liquid equilibrium of binary systems including N-formylmorpholine (NFM) with alkanes (heptane, nonane, and 2,2,4-trimethylpentane) over the temperature range from around 300 K to 420 K. Therefore, three feed-forward artificial neural network (ANN) models were developed for the three systems. Compositions of alkanesin light phase and heavy phase were considered as network inputs, and the temperature was the output variable. Genetic algorithm (GA) method was used to design the neural network. It minimized the total mean squared error (MSE) between net output and desired output with optimizing weights and biases of the ANN. The validity of the models was evaluated through a test data set, which was not used in the training data set. The results of this work show that the hybrid of artificial neural network and genetic algorithm (ANN–GA) can estimate the LLE of the binary systems with high precision.Keywords: Artificial neural network (ANN), Binary system, Genetic algorithm (GA), Liquid-liquid Equilibrium (LLE), N-formylmorpholine
-
Environmental planning and management can have positive effects on development of some land uses including industrial areas that have a major effect on economic, social and environmental conditions. Considering the most important problems associated with modeling, the fundamental methods and functions of site-selection laid inside the geographical information system are not accounted for the multi-purpose experimental programs. The main purpose of this study is to present a systematic pattern for environmental management using genetic algorithm and fuzzy analytic hierarchy process in geographical information system in order to reduce uncertainty. Through fuzzy analytic hierarchy process, the weight of criteria was calculated after extracting the criteria by Delphi technique and identifying all the effective criteria and factors involved in site selection. After preparation of intended layers, each map was prepared in the form of raster layers on geographical information system. Information layers were combined after being valued and finally the map of suitable areas was prepared. Finally, the conformity of all the obtained maps was checked out with field conditions. In this study, the genetic algorithm was used as an optimization method applied for natural selection. It was also attempted to find better solutions among others. The results showed the best site for developing industries.Keywords: Environmental Management, Fuzzy analytic hierarchy process (FAHP), genetic algorithm (GA), Geographical information system (GIS), Industrial site selection
-
The principal function of a control chart is to help management distinguish different sources of variation in a process. Control charts are widely used as a graphical tool to monitor a process in order to improve the quality of the product. Chen and Hsieh (2007) have designed a T2 control chart using a Variable Sampling Size and Control limits (V SSC) scheme. They have shown that using the V SSC scheme results in charts with more statistical power to detect small to moderate shifts in the process mean vector than the other T2 charts. In this paper, we develop an economic design for the T2 −V SSC chart to help determine the design parameters and then minimize the cost model proposed by Costa and Rahim (2001) using a Genetic Algorithm (GA) approach. We also compare economic design of the T2 −V SSC chart with the T2 −DWL, T2 −V SSI and T2 −FRS charts so as to choose the best option and, finally, carry out a sensitivity analysis to investigate the effects of model parameters on the solution of the economic design.Keywords: Adjusted average time to signal (AATS), economic design (ED), genetic algorithm (GA), Markov chain, multivariate control charts, sensitivity analysis, variable sample size, control limits (V SSC)
-
نمودارهای کنترل برای هشدار دادن در فرایندی که میزان کیفیت آن با بیش از یک مشخصه ی کیفیت همبسته تعیین می شود، مورد استفاده قرار می گیرند. مطالعات اخیر نشان داده اند که استفاده از طرح اندازه نمونه ی متغیر (VSS)، در کشف و شناسایی تغییرات کوچک در بردار میانگین، نمودارهایی با توان آماری بالاتری در مقایسه با طرح نرخ نمونه گیری ثابت را نتیجه می دهد. در این مقاله به طراحی نمودار کنترل جدیدی با استفاده از رویکرد زنجیر مارکوف پرداخته شده است که در آن علاوه بر متغیر بودن اندازه ی نمونه، حدود کنترل نیز متغیر می باشند. در این طراحی، علاوه بر در نظر گرفتن معیارهای آماری، بهینه بودن طرح از لحاظ اقتصادی با استفاده از مدل اقتصادی کوستا و رحیم (2001) نیز مورد توجه قرار گرفته است. این مدل اقتصادی مواردی چون هزینه ی هشدارهای اشتباه، هزینه ی شناسایی انحراف بادلیل و تعمیر فرایند، هزینه ی تولید محصول زمانی که فرایند در حالت خارج از کنترل به سر می برد و نیز هزینه ی نمونه گیری و بازرسی محصولات را شامل می شود. همچنین با استفاده از رویکرد الگوریتم ژنتیک (GA) به بهینه سازی مدل مورد نظر و به دست آوردن پارامترهای بهینه ی مدل پرداخته شده است. در پایان نمودارهای و نسبت به هزینه ی مورد انتظار در واحد زمان مقایسه می شوند.
کلید واژگان: حدود کنترل و اندازه نمونه ی متغیر (VSSC)، نمودار کنترل چندمتغیره، طرح آماری - اقتصادی (ESD)، زنجیر مارکوف، الگوریتم ژنتیک (GA)، متوسط زمان هشدار تعدیل یافته (AATS)T2 control charts are used to monitor a process when more than one quality variable associated with process is being observed. Recent studies have shown that using variable sample size (VSS) schemes result in charts with more statistical power when detecting small to moderate shifts in the process mean vector. This paper presents an economic- statistical design of T2 control charts with variable sample size and control limits (VSSC). We build a cost model of a T2-VSSC control chart for the purpose of economic- statistical design using the model of Costa and Rahim (2001). This cost model is constructed that involves the cost of false alarms، the cost of finding and eliminating the assignable cause، the cost associated with production in an out-of-control state، and the cost of sampling and testing. We optimize this model using a genetic algorithm (GA) approach. Furthermore، T2-VSSC and T2-VSS charts are compared with respect to the expect cost per unit time.Keywords: Variable Sample Size, Control limits (VSSC), Multivariate control chart, Economic, Statistical Design (ESD), Markov chain, Genetic Algorithm (GA), Adjusted Average Time to Signal (AATS)
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.