multi-objective programming
در نشریات گروه ریاضی-
In this paper, we present two methods to find the strictly efficient and weakly efficient points of multi-objective programming (MOP) problems in which their objective functions are pseudo-convex and their feasible sets are polyhedrons. The obtained efficient solutions in these methods are the extreme points. Since the pseudo-convex functions are quasi-convex as well, therefore the presented methods can be used to find efficient solutions of the (MOP) problem with the quasi-convex objective functions and the polyhedron feasible set. Two experimental examples are presented.Keywords: Multi-Objective Programming, Efficient Solution, Weakly Efficient Solution, Pseudo-Convex Function, Quasi-Convex Function
-
Analytical and Numerical Solutions for Nonlinear Equations, Volume:8 Issue: 2, Winter and Spring 2023, PP 121 -132It is a common characteristic of many multiobjective optimization problems that the efficient solution set can only be identified approximately. This study addresses scalarization techniques for solving multiobjective optimization problems. The min-max scalarization technique is considered, and efforts are made to overcome its weaknesses in studying approximate efficient solutions. To this end, two modifications of the min-max scalarization technique are proposed. First, an alternative form of the min-max method is introduced. Additionally, by using slack and surplus variables in the constraints and penalizing violations in the objective function, we obtain easy-to-check conditions for approximate efficiency. The established theorems clarify the relationship between \varepsilon-(weakly and properly) efficient solutions of the multiobjective optimization problem and \epsilon-optimal solutions of the proposed scalarized problems, without requiring any assumptions of convexity.Keywords: Multi-Objective Programming, Scalarization, Min-Max Method, Approximate Solutions
-
International Journal Of Nonlinear Analysis And Applications, Volume:15 Issue: 7, Jul 2024, PP 289 -298This paper is mainly concerned with some of the theoretical aspects of equitable multi-objective optimization. By using the equitability preference structure, we discuss some properties of the equitably nondominated set, such as nonemptiness, external stability and connectedness. Also, we introduce the concept of proper equitable nondominance, and show that these solutions can be obtained by minimizing a weighted sum of the sort of objective functions where all weights are positive and decreasing. Moreover, we present a hybrid scalarization problem to generate equitably nondominated solutions. This method also provides a necessary condition for the existence of properly equitable nondominated solutions.Keywords: Nondominancy, Proper Nondominance, Equitability, External Stability, Connectedness, Multi-Objective Programming
-
این مقاله روشی برای رسیدن به جواب بهین سراسری مسایل برنامه ریزی چند هدفه ی کسری هندسی (سیگنومیال) با متغیر صحیح آمیخته پیشنهاد می دهد . دراین مقاله نخست یک مسیله ی برنامه ریزی چندهدفه ی کسری هندسی (سیگنومیال) به وسیله ی یک راهبرد جدید وآسان به یک مسیله ی غیر کسری تبدیل می شودو برای رسیدن به جواب سراسری ازیک تبدیل ریلکس محدب استفاده می کنیم. سپس برای رسیدن به جواب صحیح بهین توافقی اهداف مسیله تکنیک های مرسوم برنامه ریزی فازی و نیزالگوریتم شاخه و کران غیر خطی را بکار می گیریم .علاوه براین برای یافتن جواب صحیح و سراسری با کوچکترین فاصله ازجواب مسیله ی اولیه از الگوریتم شاخه و کران فضایی استفاده می کنیم.در پایان برای نشان دادن درستی و کارایی راهبرد پیشنهادی دو مثال عددی ذکر شده است.
کلید واژگان: برنامه ریزی چند هدفه، برنامه ریزی هندسی‚ برنامه ریزی کسری، برنامه ریزی عدد صحیح، الگوریتم شاخه و کران فضاییThis study proposes a method for solving mixed integer multi-objective fractional signomial geometric programming (MIMOFSGP) problems. A few methods have been applied in the recent past to convert a fractional signomial objective function into a non-fractional signomial objective function to find the optimal solution by use of some common mathematical programming techniques. In this paper, at first a multi-objective fractional signomial programming is converted into a non-fractional multi-objective signomial programming problem by a new convenient reformulation strategy. A convex relaxation is used to reach global solution and then fuzzy programming technique is applied to find the optimal compromise solution. A mixed integer compromise optimal solution of the convex programming problem can finally be found by use of nonlinear branch and bound algorithm. Then 0n using the Spacial branch and bound algorithm, we find a solution that has the shortest distance from the solution of original problem. Finally two illustrative examples are included to demonstrate the correctness and efficiency of the proposed strategy and compare the results with the other solutions obtained by the other methods.
Keywords: Multi-objective programming, geometric programming, fractional programming, Mixed integer programming, Spatial branch, bound algorithm -
Increasing the discrimination power the of data envelopment analysis method and choosing appropriate weights is one of the important issues in data envelopment analysis. One of the ways to overcome this problem is to use multi-objective data coverage analysis. In multi-objective problems, the goal of the objective functions is usually contradictory to each other, so it is not possible to find an optimal solution for all the objective functions simultaneously. In this article, we use the ideal programming approach to solve the problem of multi-criteria data envelopment analysis, and then we compare the presented method with previous methods in the framework of preferential voting.Keywords: Data Envelopment Analysis, Multi-objective programming, Goal Programming, Preferential Voting
-
در چند دهه اخیر توجه بسیار زیادی در بحث بهینه سازی استوار در ادبیات موضوع توسط محققین صورت گرفته است. از انجا که تکنیک ایپسلون قید در چند هدفه ها از تکنیک های مهم مسایل برهم کنشی است ، لذا دراین مقاله، با توجه به اهمیت بحث بهینه سازی استوار و مسایل چند هدفه، یک مسیله برنامه ریزی کسری خطی چند هدفه را در حالتی که ضرایب توابع هدف دارای عدم قطعیت جعبه ای هستند را در نظر می گیریم. یک رویکرد بر پایه روش های اپسیلون قید و چارنزکوپر برای مساله کسری در حالت چند هدفه برای بدست آوردن جواب های کارای ضعیف استوار که دارای اهمیت ویژه در ادبیات موضوع است را برای مسیله برنامه ریزی چندهدفه کسری خطی در حالت عدم قطعیت پیشنهاد می دهیم. از تکنیک چارنز کوپر در تبدیل مساله کسری به غیر کسری استفاده کرده و در انتها همتای استوار مدل UMOLFP را در حالتی که ضرایب تابع هدف متعلق به مجموعه عدم قطعیت جعبه ای باشند را هم ارز با یک مسیله برنامه ریزی خطی نوشته و در انتها یک مثال عددی برای نشان دادن کارایی رویکرد پیشنهاد شده ارایه می دهیم.کلید واژگان: برنامه ریزی کسری خطی چند هدفه، بهینه سازی استوار، عدم قطعیت جعبه ای، روش اپسیلون قید، جواب کارای ضعیف استوارIn the last few decades there has been lots of discussion in the literature regarding robust optimization. Since Epsilon constraint is one of the most important technique in interactive problems, therefore in this paper, due to the importance of robust optimization and multi-objective programming problems, we consider Multi-Objective Linear Fractional Programming (MOLFP) problem in the presence of box-uncertainty in the coefficients of the objective functions. We propose an approach based on ε-constraint and Charnes-Cooper methods to obtain weakly robust efficient solutions, that have special importance in the literature, for a MOLFP problems in the presence of uncertain data. Charnes-cooper method is applied to reduce a fractional programm to a non fractional programm. At the end we write the robust counterpart of the UMOLFP model in the presence of the box-uncertainty and it's equivalent linear programming problem: Finally a numerical example is used to show the usefulness of the proposed approach.Keywords: robust optimization, Multi-objective programming, ε-constraint method, Linear fractional programming
-
International Journal Of Nonlinear Analysis And Applications, Volume:13 Issue: 2, Summer-Autumn 2022, PP 3261 -3270
In this paper, we introduce and discuss multi-objective interval-valued E-convex programming using gH-symmetrical differentiability. We prove nonlinear optimality conditions of Fritz John type for this context and construct an example to verify our results. Furthermore, we define LU-sE-pseudo convexity and LU-sE-quasi convexity for interval-valued functions and study some of their properties.
Keywords: Fritz John optimality conditions, interval-valued functions, E-convexity, Multi objective programming, gH-symmetrically differentiation -
این مقاله یک روند حل مناسب برای مسئله برنامه نویسی کسری خطی چند مرحلهای چند منظوره کاملا طبیعی (FRMMFP) ارایه میدهد. ابتدا، توسیعی از روش فاصله برای مقابله با ناهمواری مسئله بیان شده ارایه میشود. سپس، یک تکنیک فاصله برای خطی سازی اهداف کسری پیشنهاد شده است. سرانجام، یک اصالح از رویکرد فازی در محیط کاملا طبیعی برای حل مدل خطی ارایه میشود. برای درک روند حل روش پیشنهادی، یک مثال ارایه شده است.
This paper presents a suitable solution procedure to solve the fully rough multi-objective multi-level linear fractional programming (FRMMFP) problem. First, an extension of interval method is presented to deal with roughness of the stated problem. Then, an iterative technique is proposed for linearization of fractional objectives. Finally, a modification of fuzzy approach is provided in the environment of the fully rough to solve the linear model. An example is provided for understanding the solution procedure of the proposed method.
Keywords: Fully rough programming, multi-level programming, multi-objective programming, fractional programming, fuzzy approach -
The important issue of the aggregation preference is how to determine the weights associated with different ranking places and DEA models play an important role in this subject. DEA models use assignments of the same aggregate value (equal to unity) to evaluate multiple alternatives as efficient. Furthermore, overly diverse weights can appear, thus, the efficiency of different alternatives obtained by different sets of weights may be unable to be compared and ranked on the same basis. In order to solve two above problems, and rank all the alternatives on the same scale, in this paper, we propose a multiple objective programming (MOP) approach for generating a common set of weights in the DEA framework. Also, we develop a novel model to make a maximum discriminating among candidates’ rankings. Additionally, we present two scenarios to provide suitable strategies for solving the proposed MOP model.
Keywords: Multi-objective programming, Voting, Aggregation of preferences, Data envelopment analysis, Common set of weights, Ranking -
Using fossil fuels in transportation sector has caused many environmental and economic problems. Therefore, the use of alternative fuel vehicles is necessary. Since such vehicles have limited fuel tank capacities, hence, frequent refueling is required. Regarding the possibility of the existence of different fuel costs in various refueling stations, the selection of suitable stations with the purpose of minimizing total cost of refueling is important. Moreover, minimizing the number of refuelings could be considered as another important criterion in refueling operations of a given trip. In this paper an integer bi-objective model is proposed to select suitable refueling stations considering two criteria of minimizing the total cost of refueling and minimizing the number of refuelings. To solve the proposed model, a new algorithm is suggested and its performance is compared with the weighted sum method of multi-objective optimization literature. The results show the superiority of the proposed solution approach.
Keywords: Refueling station, Multi-objective programming, Integer programming, Labeling algorithm -
برنامه ریزی احتمالی یا تصادفی، چارچوبی برای مدلسازی مسایل بهینه سازی است که با عدم اطمینان سروکار دارند. در این مقاله، تمرکز ما روی مسایل برنامه ریزی چند هدفه ای است که در آنها ضرایب قیود و بردار سمت راست، متغیرهای تصادفی فازی هستند. روش های متعددی در مقالات برای تبدیل این مسایل به مسایل فازی یا مسایل تصادفی وجود دارد. ما مسئله را با استفاده از نوع خاصی از نامساوی فازی، به یک مسئله تصافی ساده تبدیل میکنیم. سپس روش های متداول را برای بدست آوردن جواب بهینه به کار میگیریم. در انتها، مسئله چند هدفی معادل را با یک روش تعاملی حل می کنیم. یک مثال عددی برای فرایند مذکور آورده شده است.
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic orfuzzy problem. By using a special type of fuzzy inequality, wetransform the problem into a convenient stochastic problem. Thensome known methods are applied to obtain the optimal solution.Finally, the equivalent multi-objective problem is solved by aninteractive approach. A numerical example is provided to illustrate the procedure.
Keywords: Multi-objective programming, Stochastic programming, Fuzzy programming, interactive algorithm -
Reliable hub-and-spoke network design problems under uncertainty through multi-objective programming
HLP (hub location problem) tries to find locations of hub facilities and assignment of nodes to extended facilities. Hubs are facilities to collect, arrange, and distribute commodities in telecommunication networks, cargo delivery systems, etc. Hubs are very crucial and their inaccessibility impresses on network whole levels. In this paper, first, total reliability of the network is defined based on considering the reliability values of nubs and arcs. Then, a reliable hub-and-spoke network design problem under uncertainty is introduced through the multi - objective programming method in which the parameters are random fuzzy variables. Indeed, we are making effort to either maximize the average reliability or minimize total cost. Then, the proposed reliable multi - objective hub-and-spoke network design problem under uncertainty is solved by a new method using Zimmermann fuzzy multi - objective programming and random fuzzy chance-constrained programming based on possibility theory. Finally, some benchmark problems are solved as numerical examples to clarify the described method and show its efficiency.
Keywords: Hub-and-Spoke, reliability, Multi-objective programming, random fuzzy chance-constrained programming, Possibility theory -
Traditional DEA models do not deal with imprecise data and assume that the data for all inputs and outputs are known exactly. Inverse DEA models can be used to estimate inputs for a DMU when some or all outputs and efficiency level of this DMU are increased or preserved. this paper studies the inverse DEA for fuzzy data. This paper proposes generalized inverse DEA in fuzzy data envelopment analysis.Keywords: Data Envelopment Analysis, Inverse Optimization, Efficiency, Fuzzy DEA, Multi-objective programming
-
Using alternative fuel vehicles is one of the ways to reduce the consumption of fossil fuels which have many negative environmental effects. An alternative fuel vehicle needs special planning for its refueling operations because of some reasons, e.g. limited number of refueling stations, uncertain refueling queue times in the stations, variable alternative fuel prices among the stations, etc. In this paper, a new problem as refueling an alternative fuel vehicle on a given path is formulated to minimize the cost of refueling and waiting times in the stations for refueling operations, simultaneously. To be more close to real-world situations, the waiting times are considered as intuitionistic fuzzy numbers in order to reflect uncertainty as well as hesitation due to various uncontrollable factors. To cope with the uncertainty of the problem, an intuitionistic fuzzy chance constrained method based on credibility measure is proposed to convert the fuzzy formulation to a crisp model. In order to tackle the bi-objective crisp formulation, a new interactive fuzzy solution method is proposed. A computational study on a real case from Turkey shows that the performance of the presented method is either better or the same as the approaches of the literature.}Keywords: Refueling problem, Alternative fuel vehicle, Multi-objective programming, Intuitionistic fuzzy number, Credibility Measure
-
برنامه ریزی دو سطحی، مدلی برای مسایل بهینه سازی سلسله مراتبی است که دو تصمیم گیرنده با توابع هدف، متغیر ها و قید های متفاوتی وجود دارد. آلوز و همکارانش در [1]، روشی برای محاسبه مرز کارای مساله دو سطحی خطی با دو تابع هدف در سطح بالا و یک تابع هدف در سطح پایین ارائه دادند. در این مقاله ما روش آنها را برای حالتی که بیش از دو تابع هدف در هر دو سطح وجود دارد، تعمیم داده و با بهره گیری از تغییر متغیر مناسب، روش جدیدی برای محاسبه مرز کارای مساله دو سطحی خطی با توابع هدف کسری در سطح بالا ارائه می دهیم. نهایتا کارآیی روش های پیشنهادی را با حل چند مثال عددی و مقایسه نتایج آنها با دیگر روش ها نشان می دهیم.کلید واژگان: برنامه ریزی دو سطحی، برنامه ریزی چند هدفه، مرز کارا، برنامه ریزی صحیح، آمیخته، برنامه ریزی کسریBilevel programming is the model for hierarchical optimization problems in which there are two decision makers that have different objective functions, variables and constraints. Alves et al in[1], proposed a method for computing the Pareto frontier of bilevel linear problem with biobjective at the upper level and a single objective function at the lower level. In this paper, we extend their method for the situation in which there exists more than two objective function at both levels, and then by using a suitable exchange variable, we proposed a new method for computing the Pareto frontier of bilevel linear problem with fractional multi-objective at the upper level. Finally we will show the efficiency of the propsed approaches by solving a few numerical examples and comparing the results with other methods.Keywords: Bilevel programming, Multi objective programming, Pareto frontier, mixed, integer programming, Fractional programming
-
Data envelopment analysis (DEA) is a nonparametric approach to estimate relative efficiency of Decision Making Units (DMUs). DEA and is one of the best quantitative approach and balanced scorecard (BSC) is one of the best qualitative method to measure efficiency of an organization. Since simultaneous evaluation of network performance of the quad areas of BSC model is considered as a necessity and separate use of DEA and BSC is not effective and leads to miscalculation of performance, integrated DEA-BSC model is applied. Regarding to multi-objective nature of the proposed model, two techniques including goal programming and weighted average method are used to solve such problems. At the end of the study, based on data relating to indexes of quad areas of BSC model, the results of the mentioned methods is compared. Besides assessing validation of the proposed model, the overall efficiency and each of the different stages of BSC is obtained. So that, finding a model for decision making units in various stages of BSC is the innovation of this research study.
Keywords: Data Envelopment Analysis, Balanced Scorecard, Decision Making Units, Goal Programming, Weighting objective function, Multi objective programming
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.