به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

computational fluid dynamics

در نشریات گروه محیط زیست
تکرار جستجوی کلیدواژه computational fluid dynamics در نشریات گروه علوم پایه
  • Nurfairunnajiha Ridzuan *, Nevil Wickramathilaka, Uznir Ujang, Suhaibah Azri
    Monitoring and managing environmental problems, particularly those impacting human health such as noise and air pollution, are essential. However, the current implementation has certain limitations that need improvement. In the case of noise pollution, accurately computing noise levels requires considering traffic noise propagating in all directions, necessitating the involvement of a 3D building model. Existing methods using raster cells and noise contours are insufficient in achieving high accuracy. To overcome this, we propose integrating a voxelisation approach and 3D kriging, enabling the depiction of traffic noise values for each voxel. In the context of air pollution, wind movement plays a significant role in the dispersion of contaminants. The current practice involves a random selection procedure for wind simulation within the model discretisation. However, we suggest replacing this randomness with a voxel-based model, which not only improves accuracy but also reduces computing time. Thus, the voxel-based model represents the building model in a wind computation environment, facilitating more realistic wind simulation results. This study demonstrates the applicability of the voxelisation technique in two different environmental modeling contexts using the building model of the city building modeling standard. The level of detail (LoD) in the represented building model differs between these approaches. For traffic noise, a low LoD (LoD1) is sufficient to depict exterior buildings accurately. However, for wind simulation, a higher LoD (LoD2) is necessary to accommodate the complexity of buildings and determine appropriate voxel sizes. In conclusion, the proposed improvements in the form of voxel-based modeling techniques offer enhanced accuracy and efficiency in environmental monitoring. The findings of this study have implications for improving the management and reduction of environmental problems, ultimately benefiting human health and well-being.
    Keywords: Computational Fluid Dynamics, Three-Dimensional Modelling, Traffic Noise, Voxelisation, Wind Simulation
  • M. Bagheri *, I. Mirzaee, M. Khalilian, V. Mousapour
    The present study simulates Invelox in a three-dimensional and stable way. The flow regime is turbulent flow and an unorganized grid with 350000 cells was utilized. This work has studied the modeling of invelox with conventional dimensions and four different sizes in the form of four modes for use in a residential building. The numerical data with an error of less than 6% are in good agreement with the available experimental and analytical data. The results show that considering the average velocity of mode 2 with a velocity of 6.54 m/s and a 5% difference from the other two modes, it can be operated in a residential building. It is worth noting that in this investigation, in addition, the effect of dust on the turbine performance was evaluated. The results represent that the oscillation frequency of the blades increases with the increase of the rotational speed. In the case of not considering dust particles on blades, this amount increases by 25%, while considering dust particles with an amount of 0.1%, it increases up to 300%, and this can cause irreparable damage to the turbine as well as the power generation system.
    Keywords: Computational Fluid Dynamics, Invelox, Residential Building, Wind deflector
  • Lin Gao, Yuanzhen Jiang, Kaiyang Ye, Baoqing Deng *
    The simulation of photocatalytic reactor is conducted using computational fluid dynamics. Turbulence is described by using the RNG k-ε turbulence model. The DO radiation model is used to simulate the irradiance distribution in the photocatalytic reactor. The effects of operating parameters on the performance of photocatalytic reactor are considered. Results show that the degradation rate of oxalic acid decreases with the increase of inlet flow. The degradation efficiency decreases from 50% to 40% when the flow rate changes from 2.5 m3 h−1 to 10 m3 h−1. The degradation rate of oxalic acid can be improved by increasing the irradiance of the lamp. The degradation efficiency of oxalic acid in the photocatalytic reactor first reaches a maximum degradation efficiency with the increase of titanium dioxide concentration, and then decreases with the increase of titanium dioxide concentration. An optimal concentration of catalysts exists. The maximum degradation efficiency is 27% for the catalyst concentration of 20 µgL−1.
    Keywords: Photocatalytic reactor Photocatalytic Degradation, Computational Fluid Dynamics
  • Jiahao He, Baoqing Deng *
    A mathematical model is presented to simulate the photocatalytic degradation of terbuthylazine in a continuous stirred tank reactor. The flow field is described by the continuity equation and the momentum equation. An advection-diffusion-reaction equation is used to simulate the transport of terbuthylazine.  The chemical reactions take place on the inner wall surface coated with the catalyst, which is described by a third-kind boundary condition.  A transient differential equation is used to describe the variation of inlet concentration with time. All governing equations are solved using the commercial computational fluid software ANSYS Fluent. The simulation results agree with the experimental data at different temperatures and different flow rates. The radial distribution of terbuthylazine in the reactor is discussed in detail. The velocity depicts a parabolic curve with a maximum velocity of  0.0005 m s-1, 0.001 m s-1, 0.00022 m s-1 and 0.0032 m s-1 for 50 mL min-1, 100 mL min-1, 200 mL min-1, and 300 mL min-1, respectively. At the flow rate of 300 mL min-1, concentration of terbuthylazine decreases from 3.6 mg dm-3 to 0.8 mg dm-3 whereas concentration of cyanuric acid increases from 0.05 mg dm-3 to 0.28 mg dm-3. It shows that the radial effect of velocity and concentration should be taken into account. The mathematical model used in this study is suitable for simulating the photocatalytic degradation process of terbuthylazine in continuous stirred tank reactors.
    Keywords: Terbuthylazine, Continuous stirred-tank reactors, Photocatalytic degradation, Computational Fluid Dynamics
  • Z. Aouissi *, F. Chabane, M. S. Teguia, N. Belghar, N. Moummi, A. Brima
    This numerical and experimental work aims to improve the heat transfer inside a solar thermal collector. By incorporating rectangular baffles in the middle of the distributed air passing channel at different angles of inclination (ß= 90°, ß= 180°, ß= 180° and ß= 90°). That is called the model H. These experiments were carried out in the Biskra region of Algeria in good natural conditions with an average solar radiation approximately constant I= 869 W/m2 varying from 11:30 to 14:00. After the completion of the experimental investigation, a computational fluid dynamics (CFD) model was created that matches this experimental model with the same experimental boundary conditions. In the numerical study, ANSYS Fluent 18.1 was used to conduct simulations and compare the results of the thermal and hydraulic performance of the collector. It was concluded that the effectiveness of the CFD model, meaning that the theoretical and numerical data were very close to each other for all mass flow rates. As the mass flow increased the heat transfer process increased, while the absorber plate temperature inside the collector for experimental and numerical studies decreased. Addition of baffles increased heat transfer, due to the creation of turbulent flow that leads to crack the dead thermal layers near the absorber plate, which leads to an increase in heat transfer from the absorber plate to the air.
    Keywords: Ansys Fluent, baffles, Computational Fluid Dynamics, heat transfer, Solar Air Collector
  • S. A. Gandjalikhan Nassab *, M. Moein Addini
    In the present paper, the use of radiating gas instead of air inside the cavity of compound parabolic collectors (CPSs) is suggested and verified by numerical analysis. The collector under study has a simple cone shape with flat absorber which is filled with a participating gas such as carbon dioxide instead of air for the purpose of increasing the thermal performance. In numerical simulation, the continuity, momentum and energy equations for the steady natural convection laminar gas flow in the CPC’s cavity and the conduction equation for glass cover and absorber plate were solved by the finite element method (FEM) using the COMSOL multi-physics. Because of the radiative term in the gas energy equation, the intensity of radiation in participating gas flow should be computed. Toward this end, the radiative transfer equation (RTE) was solved by the discrete ordinate method (DOM), considering both diffuse and collimated radiations. The  approximation was employed in calculation of the diffuse part of radiation. It was observed that the gas radiation causes high temperature with more uniform distribution inside the cavity of collector. Also, numerical results reveal more than 3% increase in the rate of heat transfer from absorber surface into working fluid and hence a desired performance for the collector because of the gas radiation effect.  Comparison between the present numerical results with theoretical and experimental data reported in the literature showed good consistency.
    Keywords: Compound Parabolic Collector, Gas radiation, Natural convection, Computational Fluid Dynamics
  • حامد مجیدیان، فرهود آذرسینا *
    زمینه و هدف
    موقعیت کشور ایران در منطقه مناسب جغرافیایی، دارا بودن مرزهای گسترده دریایی و همچنین وجود خطوط ترانزیتی گسترده کالا موجب شده است اغلب تجارت کالا به وسیله کشتی صورت می گیرد. همواره یکی از بحث های گسترده در زمینه حمل و نقل دریایی میزان سوخت مصرفی می باشد. در این پژوهش بر آنیم تا با مدلسازی چندنمونه جانمایی کانتینر در سرعت یکسان به مدلی بهینه از جانمایی کانتینر بر روی عرشه بپردازیم.
    روش بررسی
    در این مقاله با استفاده از نرم افزار انسیس سی اف ایکس یک شناور پست پاناماکس کانتینربر به ظرفیت 9000 TEU با چیدمان های مختلف کانتینر روی عرشه با نسبت 4/1 مدل سازی و شبکه بندی شده، سپس جریان باد حول آن در چیدمان های مختلف کانتینر شبیه سازی شده است.
    یافته ها
    نتایج تحقیق نشان می دهد که شکل جانمایی کانتینرها بر روی عرشه بر مقاومت بادکشتی تاثیرگذار است و نتایج شبیه سازی عددی تطبیق مناسب با آزمایش های تجربی دارد. در ادامه تاثیر چیدمان کانتینر بر کاهش مصرف سوخت و آلاینده ها محاسبه شده است. بحث و نتیجه گیری: توصیه می شود که برای کاهش نیروی درگ و در نتیجه کاهش مصرف سوخت و صدور آلاینده ها زیست محیطی در بارچینی کشتی های کانتینری از خالی گذاشتن و چیدمان نامتوازن کانتینرها روی عرشه پرهیز شود. همچنین، چیدمان کانتینرها چه در عرشه جلویی و چه در عرشه عقبی به حالت خط جریان سازی شده نزدیک تر گردد.
    کلید واژگان: کشتی کانتینربر، دینامیک سیالات محاسباتی، نیروی درگ باد، آشفتگی جریان، مصرف سوخت
    Hamed Majidian, Farhood Azarsina *
    Background and Objective
    Iran has access to open seas and plenty of sea transit around it has urged presence of merchant ships in the region. Fuel consumption has always been a matter of concern for ships. In this study, it is attempted to develop computer models for several container ship cargo configurations and discuss an optimum configuration at a constant speed front wind.
    Method
    The paper presents simulation results using ANSYS CFX commercial software for a Post-Panamax 9000 TEU container ship. The ship is modelled in a 1:4 scale, then using unstructured mesh the wind filed around it is solved. Drag force, drag coefficient, pressure contour and wind streamline velocity in ten different loading conditions are compared with each other. Finally, the optimized container configuration for loading on deck of the vessel is introduced. Findings: Simulation results demonstrate the influence of container configuration on wind load distribution. Also the numerical results are verified versus wind tunnel test data. Finally, the influence of container configurations on fuel consumption and reduction of pollutant emissions was calculated. Discussion and Conclusion: It is proposed to minimize empty spaces between the cargo containers and avoid unbalanced cargo distribution over deck in order to reduce the wind drag force and consequently reduce the fuel consumption and pollutant emissions. Also, it is suggested to make cargo distribution on the forward and aftward deck areas more streamlined.
    Keywords: Container Ship, Computational Fluid Dynamics, Air Resistance, Flow Turbulence, Fuel Consumption
  • A. Kumar Thakur *, S. Kumar Pathak
    Solar still is a device, used to convert brackish water into distill water but the major issue low profitability and it is imperative to outline an ideal device. Computational Fluid Dynamics (CFD) simulation can help designers to improve the execution of a sun oriented still for a given cost. In this study, we examine the capacity of CFD simulation in calculation of heat and mass transfer in a single basin sun powered still. Experiments were performed in month of June in Jaipur, India. In this work, single basin solar still was fabricated and then optimized using CFD based methodology for water depth of 0.01m, 0.02m and 0.03 m. CFD based results help in a designing a solar still with maximum yield productivity of distilled water. It was concluded that maximum yield was achieved when water depth has minimum value i.e. 0.01 m. Total dissolved solid (TDS) value for sample water taken at water basin was in range of 500 PPM but after distillation water at output reaches below 50 PPM. Therefore, solar still was capable of improving the quality of water and brackish water of high TDS value can be reduced and used for drinking purpose.
    Keywords: Passive type, Computational fluid dynamics, Vitality, Evaporation, Condensation, Total dissolved solid
  • میترا بیات، محمدرضا مهرنیا، نوید مستوفی، مهدی رجبی هامانه
    بیوراکتور غشایی یکی از فناوری های پیشرفته مورد توجه برای تصفیه فاضلاب و بازیافت آب است که با ترکیب فرایند تصفیه بیولوژیکی لجن فعال و فیلتراسیون غشایی صورت می گیرد. بیوراکتور غشایی در مقایسه با فرایندهای متداول تصفیه فاضلاب دارای مزایایی از جمله بازدهی بالای تصفیه است و به فضای کمتری نیاز دارد. از مهم ترین مشکلاتی که فرایندهای غشایی با آن مواجه اند، گرفتگی غشاست که کارایی فرایند را کاهش و هزینه های آن را افزایش می دهد. بنابراین، شناسایی ویژگی های موثر در این پدیده و از جمله هیدرودینامیک سامانه از موضوعات مهم پژوهش است. دینامیک سیالات محاسباتی ابزاری قدرتمند برای درک ارتباط بین مکانیک سیالات و گرفتگی در بیوراکتورهای غشایی است. در این تحقیق اثر هیدرودینامیکی جریان چندفازی در گرفتگی غشا در یک بیوراکتور غشایی هواگرد با استفاده از دینامیک سیالات محاسباتی در شرایط عملیاتی مختلف شامل چهار نرخ هوادهی و قطر حباب مربوطه و دو غلظت توده زیستی مطالعه شد. شبیه سازی سه بعدی بیوراکتور غشایی به صورت دو و سه فازی با استفاده از مدل چندفازی اولرین و مدل اغتشاش k-ε انجام شده است. نتایج نشان داد با افزایش دبی هوادهی و غلظت توده زیستی، تنش برشی گاز و مایع بر سطح غشا افزایش و در نتیجه گرفتگی غشا کاهش می یابد. همچنین، اثر توزیع و رفتار حباب بر نتایج بررسی شد. علاوه بر این، نتایج نشان داد که استفاده از معادلات گرانولی اویلر در شبیه سازی سه فازی سامانه با در نظر گرفتن اندازه لخته ها، سبب نزدیک شدن نتایج شبیه سازی به حالت واقعی می شود. نتایج شبیه سازی به خوبی با داده های آزمایشگاهی هم خوانی دارد که تاییدی بر صحت شبیه سازی و مدل موازنه جمعیتی مورد استفاده است.
    کلید واژگان: بازیافت آب، بیوراکتور غشایی، تصفیه فاضلاب، دینامیک سیالات محاسباتی، گرفتگی
    Mitra Bayat, Mohammad Reza Mehrnia, Navid Mostoufi, Mehdi Rajabi Hamaneh
    Membrane bioreactor (MBR) is an effective technology for wastewater treatment and water reuse which is becoming increasingly popular due to its numerous applications and advantages over conventional activated sludge process. This novel technology have advantages of small footprint, high concentration of mixed liquor suspended solids (MLSS), high removal efficiency of chemical oxygen demand (COD), less production of excess sludge and to be reliable and simple to operate. Membrane fouling and its consequences, regarding plant maintenance and operating costs, has gained attention in recent years as a major obstacle for development of this technology. Various methods have been used to reduce membrane fouling and new solutions are frequently proposed and used. Among different operational variables, aeration is the most effective factor on membrane fouling mitigation. Despite its major role in membrane fouling reduction, the energy consumption of aeration is the main operating cost for MBRs, such that approximately 30-50% of consumed energy in a submerged MBR is used for aeration. Hence, operation improvement by optimizing hydrodynamic conditions has a high technical and economic significance. Computational fluids dynamics (CFD) is a powerful tool for understanding the relationship between hydrodynamics and fouling in MBRs. Researches have been conducted to assess hydrodynamic and its effect on the system efficiency. Most of design, operational and geometrical variables, like bubble diameter, membranes distance, presence of baffles and walls in flat-sheet modules require evaluation and optimization. Membranes are mostly assumed to be rigid in CFD simulations of MBRs. In this study, effect of hydrodynamic characteristics of a submerged membrane bioreactor on membrane fouling was investigated using computational fluid dynamics simulation. In this study, effect of hydrodynamic characteristics on fouling in an airlift MBR was investigated using CFD simulation. Three-dimensional two and three-phase simulation was implemented using Eulerian approach and k-ε turbulent model. Results indicated that by increasing air flow rate and MLSS concentration, shear stress on membrane surface increase and membrane fouling decreases. Also effect of considering population balance model in simulation was studied. In addition results indicated that using granular model in three-phase simulation would lead to a more realistic simulation. Simulation results were in good agreement with experimental data which demonstrate the ability of this CFD approach and population balance model as an efficient tool. Materials and methods Experiments were carried out in a submerged membrane bioreactor which is 70 cm in height, 23 cm in length and 21 cm in width with operating volume of 20 L for activated sludge. A flat-sheet chlorinated polyethylene membrane with mean pore size of 0.45 μm and effective membrane area of 0.11 m2 was used. Two baffles were located at both sides of membrane. The required air was pumped through a sparger located beneath the membrane, and its flow rate was measured using a flow meter. The biomass was obtained from a municipal wastewater treatment plant in Tehran, Iran. The driving force for filtration was created by vacuum. In all experiments, the system was fed by a synthetic influent, glucose, ammonium sulfate, and ammonium phosphate which are the sources of carbon, nitrogen, and phosphorus, respectively. The tests were carried out at four different air flow rates of 0.2, 0.4, 0.6 and 0.8 m3/h and at two MLSS concentrations of 8 and 12 g/L. The permeate flow rate, MLSS concentration and membrane resistance were measured. Total gas hold-up was also estimated by visual determination of bed expansion. A three-dimensional two- and three-phase model was used to investigate the hydrodynamics of the MBR. In order to describe liquid and gas properties in multiphase flow, an Eulerian-Eulerian approach was implemented. The standard k-ε turbulent model was used for phases to model turbulence. A fine mesh was generated between the membranes. However, to decrease the number of computational cells, only a quarter of the set-up was considered as the simulation domain due to the symmetry from both sides. The projected area of the air spargers at the bottom of the system were considered as the air velocity inlet boundary condition. The boundary condition at the top of the MBR was set to open to atmosphere in order to let the air exit to the atmosphere. Also a bubble size distribution with ten bubble classes and the possibility of coalescence and breakage was used in some of the simulations. In this work, phase-coupled simple with pressure based solver was applied for the Eulerian multiphase simulations. The velocities were solved coupled by phases, but in a discrete method. This method solves momentum and pressure based continuity equations simultaneously, thus the rate of convergence improves compared to the segregated method which solves the governing equations sequentially.
    Results And Discussion
    - The effect of bubble size distribution in MBR Due to importance of bubble characteristics and their distribution in bioreactors, a simulation was carried on in which the bubble size distribution, based on experimental data, was used. MBR was simulated at TMP of 40 kPa, MLSS concentration of 8 g/L and four different air flow rates of 0.2, 0.4, 0.6 and 0.8 m3/h. Ten bubble classes are studied with possibility of accumulation and breakage. Bubble size distribution in 5 stages of bioreactor was investigated. Results indicate that by increasing the aeration intensity, ratio of larger bubbles increases in the system. After formation of air bubbles at the sparger, their coalescence and breakage occur during their movement towards the free liquid surface and gradual increase of bubble diameter can be observed. Larger bubbles are commonly seen at higher levels, near the membrane surface and the wall. Average bubble diameter from both simulation and experimental results were compared. Simulation results correlate with experimental data which verified bubble size distribution in simulation. So a mean bubble diameter was used in other following simulations. - The effect of MLSS concentration and aeration intensity In order to investigate the effect of aeration as the main effective factor in membrane fouling reduction, simulation was done at various air flow rates of 0.2, 0.4, 0.6 and 0.8 m3/h. Gas holdup was measured experimentally and was compared with simulation results. Results demonstrate that increasing the aeration intensity, and consequent growth in average bubble diameter, causes a greater gas holdup in the bioreactor. Although the growth in the average bubble diameter leads to reduction of the gas holdup due to higher rise velocity, the overall effect of increasing the aeration intensity and average bubble diameter is higher gas holdup in the system. Also by increasing MLSS concentration and consequence increase in the activated sludge viscosity, more bubbles are trapped in the riser which leads to more gas holdup. In airlift bioreactors, flow of air is the main cause of liquid motion and circulation. Therefore, by increasing the aeration intensity, the liquid velocity increases in both riser and down comer which leads to a greater shear stress on the membrane surface. Also, at higher MLSS concentrations, which correspond to greater liquid viscosity, air and liquid shear rates increase. However at lower aeration intensities, changing the MLSS concentration does not make a significant change in the shear stress. This is due to the fact that aeration cannot impose the necessary rate of mixing in the bioreactor and provide the force required for particles movement. Exerting more shear stress on membrane surface in higher aeration intensity leads to a decrease in cake formation on membrane surface and membrane fouling resistance. Also gas shear stress contours on membrane surface at various air flow rates was investigated. It was seen that a greater shear stress is exerted on the surface in the middle and upper half of the membrane which is owing to higher velocity and turbulence of gas and liquid mixture in this region. Also, at air flow rate of 0.2 m3/h, the maximum shear stress is exerted on a small part of the membrane surface, while by increasing the air flow rate to 0.8 m3/h, a greater surface area is exposed to the maximum shear stress. - Validation of the model In order to validate simulation results, gas shear stress and its effect on MBR operation and membrane resistance was studied under different conditions. Results indicate that by increasing air flow rate, resistance reaches its lowest amount. By increasing aeration intensity stress changes resulting from gas and liquid becomes ascending. It should be mentioned that both stresses influence cake formation and total resistance on surface tension, But it cannot be specifically said which effect is more. Other studies indicate that in constant pressure systems much change is not observed after reaching semi-constant condition. As mentioned before, aeration causes cross flow on membrane in air lift bioreactor and the more aeration causes more flow circulation velocity and lifting force on particles, which leads to membrane resistance reduction. Liquid shear stress changes on membrane surface in different air flow rates, shows a similar trend. Also gas hold up was measured experimentally and was compared to simulation results. It was seen that simulation results are in good agreement with experimental data which indicates model accuracy and ability of computational fluid dynamics for investigation and prediction of bioreactor hydrodynamic. - The effect and behavior of solid particles distribution Three-phase simulation was studied in order to approach real conditions and identification of solid particles aggregate. Three-phase simulation in aeration intensity of 0.8 m3/h and MLSS concentration of 8 g/L was done. Average particle diameter was determined by microscopic image of active sludge and image analysis of 6 µm. Eulerian approach was used to model three-phase simulation. Volume fraction distribution of solid phase particles of sludge, liquid and air were investigated. Results show that solid particles accumulate less near membrane and are accumulated more in bottom of bioreactor due to more aeration and liquid circulation around baffles. In order to achieve more uniform distribution of solid particles, air distributor can be placed at the bottom in order to prevent particle accumulation in that area. Conclusion A submerged membrane bioreactor was investigated using CFD simulation. A two- and three-phase simulation using Eulerian approach was implemented. In addition, the effect of permeate flux was considered in simulation. Simulation results were validated against the experimental data. From the results reported here, the following conclusions can be drawn: - By using bubble size distribution, bubbles behavior during their movement in system can be investigated. Results show that bubble size increases during their movement from sparger to free surface of liquid and bigger bubbles tend to accumulate near membrane surface and walls. - By increasing aeration intensity and MLSS concentration in system, gas and liquid shear stress on membrane surface increases. - Simulation results were in good agreement with experimental data which indicates model accuracy and ability of computational fluid dynamics for investigation and prediction of bioreactor hydrodynamic. - Application of granular model in three-phase simulations causes reactor conditions come closer to actual one. Results indicate that solid particles tend to accumulate more in bottom of bioreactor and less near membrane and around baffles.
    Keywords: Wastewater treatment, water reuse, membrane bioreactor, fouling, computational fluid dynamics
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال