teaching–learning based optimization
در نشریات گروه فنی و مهندسی-
با وجود مزایای فناوری چندآنتنه انبوه، الگوریتم های آشکارساز سنتی چندآنتنه برای سیستم ها با آنتن های مقیاس بزرگ مناسب نیستند و به کارگیری این فناوری مستلزم افزایش چشمگیر هزینه های محاسباتی می باشد. در این مقاله، یک گیرنده با پیچیدگی کم با استفاده از الگوریتم فراابتکاری آموزش-یادگیری (TLBO) برای سیستم چندآنتنه انبوه طراحی می گردد. الگوریتم TLBO به عنوان یکی از روش های پیشرفته هوش جمعی، برای مسئله بهینه سازی عددی با مقیاس بزرگ بسیار کاربردی است؛ بنابراین، ما ازاین روش برای جستجوی بردار راه حل بهینه در الفبای مدولاسیون استفاده می کنیم. به جهت اثبات صحت و کارایی آشکارساز پیشنهادی شبیه سازی سیستم با ابعاد متفاوتی از 64×64 تا 1024×1024 انجام گردید. آشکارساز TLBO پیشنهادی در مدت زمان محدود، به میزان خطای بیت نزدیک به10^(-5) در نسبت متوسط سیگنال به نویز دریافتی 12 دسی بل دست می یابد که تقریبا برابر با عملکرد خطای بیت آشکارساز بهینه، درست نمایی بیشینه، است. در نتیجه آشکارساز پیشنهادی برای به کارگیری در سیستم های چندآنتنه انبوه بسیار کارا می باشد.کلید واژگان: الگوریتم آشکار سازی، ارتباطات بی سیم نسل 5، بهینه سازی مبتنی بر آموزش-یادگیری، سیستم چند ورودی چند خروجی انبوهDespite the advantages of massive multi-input multi-output (MIMO) technology, traditional multi-antenna detection algorithms are not suitable for systems with large-scale antennas, and the use of this technology requires a significant increase in computational costs. In this paper, a low-complexity receiver is proposed using a Teaching-Learning based optimization (TLBO) heuristic algorithm for a large-scale system. The TLBO algorithm, as one of the advanced methods of intelligence, is very useful for large-scale problems. Therefore, we use this method to search for the optimal solution vector in the modulation alphabet. In order to prove the accuracy and efficiency of the detector, it was suggested to simulate the system with different dimensions from 64×64 to 1024×1024. The proposed TLBO detector, in a limited time, achieves a bit error rate (BER) 10^(-5) in the average signal-to-noise ratio of 12 dB, which is approximately equal to the optimal detector performance, and maximum likelihood. As a result, the proposed detector is very efficient for use in massive MIMO systems.Keywords: 5G wireless communication, Detection algorithm, Massive Multi Input Multi Output, Teaching-Learning based optimization
-
امروزه بازار برق در جهان به صورت علمی شناخته شده می باشد که رقابت در آن هر روز بیشتر از روز قبل است. از آنجا که قابلیت ذخیره سازی انرژی الکتریکی بسیار ناچیز می باشد، بنابراین پیش بینی بار مصرفی و قیمت برق به شرکت کنندگان بازار در بدست آوردن سود هرچه بیشتر کمک شایانی می کند. تاثیرپذیری الگوی بار از عوامل مختلف و غیرخطی بودن سیگنال قیمت برق، انجام پیش بینی دقیق بار و قیمت را دچار مشکل می کند؛ بنابراین استفاده از الگوریتم های هوشمند در مقایسه با روش های عددی و آماری کاربرد بیشتری در مسایل پیش بینی پیدا کرده است. از اینرو در این پایان نامه مسایل مربوط به پیش بینی بار و قیمت برق بیان شده است. همچنین پیش بینی بار الکتریکی و قیمت برق با استفاده از شبکه عصبی فازی تطبیقی (ANFIS) ترکیبی با الگوریتم آموزش و یادگیری (TLBO) صورت گرفته است و تاثیر عوامل مختلف بر روی آن بررسی و شبیه سازی شده است. در واقع با ترکیب الگوریتمهای تکاملی با سیستم عصبی فازی، تنظیم مقادیر بهینه پارامترهای شبکه عصبی فازی تطبیقی به الگوریتم بهینه سازی هوشمند آموزش و یادگیری محول گردد. هدف از بکارگیری این رویکرد بهبود عملکرد شبکه و کاهش پیچیدگی های محاسباتی در مقایسه با روش های گرادیان نزولی و حداقل مربعات می باشد. نتایج پیاده سازی الگوریتم پیشنهادی نشان دهنده کارایی بهتر این الگوریتم در مقایسه با الگوریتم های پیشین پیش بین بار و قیمت برق است.
کلید واژگان: پیش بینی بار، پیش بینی قیمت، الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری، شبکه عصبی فازی تطبیقیJournal of New Achievements in Electrical, Computer and Technology, Volume:3 Issue: 8, 2024, PP 56 -81Today, the electricity market in the world is known scientifically that the competition in it is more every day than the previous day. Since the ability to store electrical energy is very small, therefore, forecasting the consumption load and the price of electricity helps the market participants to get more profit. The impact of the load pattern on various factors and the non-linearity of the electricity price signal make it difficult to accurately forecast the load and price; Therefore, the use of intelligent algorithms has found more use in forecasting problems compared to numerical and statistical methods. Therefore, in this thesis, the issues related to forecasting the load and electricity price are stated. Also, the electric load and electricity price have been predicted using the Adaptive neuro fuzzy inference system (ANFIS) combined with the Teaching Learning based Optimization (TLBO) and the effect of various factors on it has been investigated and simulated. In fact, by combining the evolutionary algorithms with the fuzzy neural system, the adjustment of the optimal values of the parameters of the adaptive fuzzy neural network should be assigned to the intelligent optimization algorithm of teaching and learning. The purpose of using this approach is to improve network performance and reduce computational complexity compared to gradient descent and least squares methods. The results of the implementation of the proposed algorithm show the better efficiency of this algorithm compared to previous algorithms for predicting load and electricity price.
Keywords: Load forecasting, price forecasting, Teaching Learning based Optimization, Adaptive neuro fuzzy inference system -
Journal of Operation and Automation in Power Engineering، سال یازدهم شماره 2 (Summer 2023)، صص 83 -93این مقاله یک کنترل کننده مقاوم بر اساس تیوری فیدبک برای مرکز تجمیع توان تولیدی و مصرفی خودروهای الکتریکی جهت حل مشکل کنترل فرکانس که در اثر مشارکت خودروهای الکتریکی در این امر وجود دارد طراحی می کند. از روش تابع لیاپونوف-کراوسکی برای برآورده کردن دو هدف پایداری و عملکرد مقاوم استفاده می شود. سپس مقادیر بهینه ضرایب مشارکت خود روها در کنترل های اولیه و ثانویه فرکانس توسط الگوریتم آموزشی-یادگیری تعیین می گردند. شرط حدود بالا و پایین توان تولیدی به عنوان یک عنصر غیر خطی نیز در نظر گرفته می شود. نتایج شبیه سازی بر روی دو سیستم قدرت متفاوت با استفاده از نرم افزار دیگسایلنت نشان می دهد که کنترل کننده طراحی شده عملکرد بسیار مطلوبی در کنترل فرکانس شبکه دارد.کلید واژگان: خودروهای الکتریکی، کنترل فرکانس، روش بهینه سازی آموزش و یادگیری، نامعادله ماتریسی خطیJournal of Operation and Automation in Power Engineering, Volume:11 Issue: 2, Summer 2023, PP 83 -93This paper proposes a robust state feedback controller for Electric Vehicle aggregators to solve the challenging problem caused by the participation of Electric Vehicles in the load frequency control of the power system. The Lyapunov-Krasovskii functional method is used to achieve two objectives of the robust performance and stability. Then, by using teaching learning based optimization algorithm, both primary and secondary participation gains of EV aggregators in LFC are optimally determined. The Generation Rate Constraint and time delay, as nonlinear elements, are also taken into account. Simulations are carried out on two nonlinear power systems by using the power system simulation software. The results show that the designed controller gives a desirable robust performance for frequency regulation at the presence of uncertainties.Keywords: Electric vehicle aggregator, Frequency control, Linear Matrix Inequality, Teaching Learning Based Optimization
-
International Journal of Optimization in Civil Engineering, Volume:12 Issue: 3, Summer 2022, PP 399 -410
Today, due to the complexity of engineering problems and at the same time the advancement of computer science, the use of machine learning (ML) methods and soft computing methods in solving engineering problems has been considered by many researchers. These methods can be used to find accurate estimates for problems in various scientific fields. This paper investigates the effectiveness of the Adaptive Network-Based Fuzzy Inference System (ANFIS) hybridized with Teaching Learning Based Optimization Algorithm (TLBO), to predict the ultimate strength of columns with square and rectangular cross-sections, confide with various fiber-reinforced polymer (FRP) sheets. In previous studies by many researchers, several experiments have been conducted on concrete columns confined by FRP sheets. The results indicate that FRP sheets effectively increase the compressive strength of concrete columns. Comparing the results of ANFIS-TLBO with the experimental findings, which were agreeably consistent, demonstrated the ability of ANFIS-TLBO to estimate the compressive strength of concrete confined by FRP. Also, the comparison of RMSE, SD, and R2 for ANFIS-TLBO and the studies of different researchers show that the ANFIS-TLBO approach has a good performance in estimating compressive strength. For example, the value of R2 in the proposed method was 0.92, while this parameter was 0.87 at best among the previous studies. Also, the obtained error in the prediction of the proposed model is much lower than the obtained error in the previous studies. Hence, the proposed model is more efficient and works better than other techniques.
Keywords: ANFIS, Teaching Learning Based Optimization, FRP, compressive strength -
International Journal of Optimization in Civil Engineering, Volume:12 Issue: 2, Spring 2022, PP 245 -278
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space. Also, the difference between the average and another solution is established as a new step size. In the present paper, the quantum teacher phase is introduced to improve the performance of the current version of the teacher phase of the Teaching-Learning-Based Optimization algorithm (TLBO) by using the formulation obtained from solving the time-independent Schrodinger equation predicting the probable positions of optimal solutions. The results show that QTLBO, an acronym for the Quantum Teaching- Learning- Based Optimization, improves the stability and robustness of the TLBO by defining the quantum teacher phase. The two circulant space trusses with multiple frequency constraints are chosen to verify the quality and performance of QTLBO. Comparing the results obtained from the proposed algorithm with those of the standard version of the TLBO algorithm and other literature methods shows that QTLBO increases the chance of finding a better solution besides improving the statistical criteria compared to the current TLBO.
Keywords: quantum-inspired evolutionary algorithm, teaching-learning-based optimization, population-based algorithm, circulant truss, quantum behaved particles, quantum teacher, frequency constraint -
To achieve high-quality software, different tasks such as testing should be performed. Testing is known as a complex and time-consuming task. Efficient test suite generation (TSG) methods are required to suggest the best data for test designers to obtain better coverage in terms of testing criteria. In recent years, researchers to generate test data in time-efficient ways have presented different types of methods. Evolutionary and swarm-based methods are among them. This work is aimed to study the applicability of swarm-based methods for efficient test data generation in EvoSuite. The Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Teaching Learning Based Optimization (TLBO), and Imperialist Competitive Algorithm (ICA) are used here. These methods are added to the EvoSuite. The methods are adapted to work in a discrete search space of test data generation problem. Also, a movement pattern is presented for generating new solutions. The performances of the presented methods are compared over 103 java classes with two built-in genetic-based methods in EvoSuite. The results show that swarm-based methods are successful in solving this problem and competitive results are obtained in comparison with the evolutionary methods.Keywords: Test data generation, Firefly Algorithm, particle swarm optimization, Teaching Learning Based Optimization, Imperialist Competitive Algorithm, EvoSuite
-
روش جوشکاری مقاومتی نقطه ای یکی از روش های موثر برای اتصال ورق های فلزی می باشد. تخمین نیروی شکست در قطعات جوشکاری شده از اهمیت بالایی برخوردار بوده و از روش های مختلفی برای یافتن نیروی شکست استفاده می شود. در این مقاله از یک سیستم استنتاج عصبی-فازی تطبیقی (انفیس) برای تخمین و پیش بینی میزان استحکام قطعات جوشکاری شده استفاده می شود. برای این منظور با انجام یک طراحی آزمایش برای پارامترهای موثر فرآیند شامل شدت جریان جوشکاری، زمان اعمال جریان، زمان خنک شدن و نیروی مکانیکی، نمونه های جوشکاری تهیه شد. ورق مورد استفاده در نمونه ها فولاد کربنی AISI 1060 می باشد. پس از انجام آزمون کشش استحکام نمونه ها بدست آمده و سپس با استفاده از الگوریتم بهینه سازی آموزش و یادگیری در سیستم استنتاج عصبی-فازی تطبیقی پارامترهای بهینه مدل توسعه داده شده بدست آمد. 70 درصد داده های مربوط به استحکام نمونه ها برای آموزش سیستم استنتاج عصبی-فازی تطبیقی و 30 درصد باقیمانده برای بررسی صحت مدل ایجاد شده(بخش تست) مورد استفاده قرار گرفته است. دقت مدل بدست آمده با استفاده از نمودارهای مختلف و همچنین بر اساس معیارهای آماری جذر میانگین مربعات خطا، میانگین خطای مطلق، ضریب تعیین و درصد میانگین خطای مطلق بررسی شده است. از نتایج بدست آمده مشخص می شود که شبکه انفیس در پیش بینی استحکام شکست قطعات جوشکاری شده توسط فرآیند جوشکاری مقاومتی نقطه ای بسیار موفق عمل کرده است. در پایان مشاهده می شود که ضریب تعیین و درصد میانگین خطای مطلق برای تخمین استحکام شکست در بخش آموزش به ترتیب برابر با 99/0 و 48/0 درصد و در بخش تست برابر با 95/0 و 2/6 درصد می باشند.
کلید واژگان: جوشکاری مقاومتی نقطه ای، استحکام اتصال، شبکه سیستم عصبی- فازی تطبیقی، انفیس، الگوریتم آموزش و یادگیریResistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded samples by RSW. A design of experiments (DOE) is prepared according to effective process parameters includes welding current, welding cycle, cooling cycle and electrode force. The sheet metal samples prepared from AISI 1075 carbon steel. Tensile test specimens are prepared and the tensile-shear strength of welded samples are measured. A model is developed according to ANFIS and trained according to teaching-learning based optimization algorithm. 70 % of test data used for network train and the remained 30 % used for access the accuracy of trained network. The accuracy of the trained network was assessed and the results show that the trained network can predict the joint strength with high accuracy. The determination factor (R2) and mean absolute percentage error (MAPE) are 0.99 and 0.48 % for trained data and 0.95 and 6.2% for test data.
Keywords: Resistance Spot Welding, RSW, Joint Strength, Adaptive Neuro-Fuzzy Inference System, ANFIS, Teaching-Learning Based Optimization -
International Journal of Optimization in Civil Engineering, Volume:11 Issue: 3, Summer 2021, PP 497 -513
The optimal design of dome structures is a challenging task and therefore the computational performance of the currently available techniques needs improvement. This paper presents a combined algorithm, that is supported by the mixture of Charged System Search (CSS) and Teaching-Learning-based optimization (TLBO). Since the CSS algorithm features a strong exploration and may explore all unknown locations within the search space, it is an appropriate complement to enhance the optimization process by solving the weaknesses with using another optimization algorithm’s strong points. To enhance the exploitation ability of this algorithm, by adding two parts of Teachers phase and Student phase of TLBO algorithm to CSS, a method is obtained that is more efficient and faster than standard versions of these algorithms. In this paper, standard optimization methods and new hybrid method are tested on three kinds of dome structures, and the results show that the new algorithm is more efficient in comparison to their standard versions.
Keywords: dome structures, charged system search, optimum design, teaching-learning-based optimization, structural optimization -
در این مقاله، به بررسی تجربی، عددی و نیمه تحلیلی میزان انحراف پرتابه سر تخت پس از برخورد به صفحه سوراخ دار پرداخته شده است. در این راستا جهت بررسی تجربی از پرتابه های فولادی 52100 AISI و صفحات سوراخ دار 1045 AISI با 3 قطر سوراخ 5، 7 و 9 میلی متر و جهت مدل سازی عددی از نرم افزار المان محدود آباکوس استفاده شده است. در ادامه و پس از مقایسه نتایج عددی و تجربی و تایید صحت مدل عددی ارایه شده، با توجه به محدودیت های آزمایشگاهی به بررسی عددی برخورد پرتابه با میزان متفاوت همپوشانی با سوراخ و 3 سرعت متفاوت پرتابه پرداخته و 40 حالت برخورد طراحی و مدل سازی شده است. در ادامه با توجه به داده های به دست آمده، استفاده از الگوریتم بهینه سازی مبتنی بر فرایند آموزش- یادگیری که یک الگوریتم بهینه سازی تکاملی می باشد و کدنویسی در نرم افزار متلب رابطه ای نیمه تحلیلی جهت بدست آوردن میزان انحراف پرتابه پس از برخورد به صفحه سوراخ دار برای هر مقدار قطر سوراخ، قطر پرتابه، سرعت پرتابه و همچنین میزان همپوشانی بدست آمده است. در انتها به مقایسه بین نتایج تجربی، عددی و فرمول بدست آمده پرداخته شده و نشان دهنده مطابقت خوب بین نتایج می باشد.
کلید واژگان: پرتابه، صفحه سوراخ دار، انحراف، بهینه سازی مبتنی بر فرایند آموزش-یادگیری.In this paper, the experimental, numerical and semi-analytical study of the deflection of a blunt projectile after hitting the perforated plate has been done. In this regard, for experimental study, AISI 52100 steel projectiles and 1045 AISI perforated plates with 3 hole diameters of 5, 7 and 9 mm have been used, and for numerical modeling, Abacus finite element software has been used. Then, after comparing the numerical and experimental results and confirming the accuracy of the presented numerical model, according to the laboratory limitations, the projectile impact is numerically evaluated with different overlap, and 3 different projectile velocities. And 40 type of impacting modes are designed and modeled. According to the obtained data, the use of optimization algorithm based on the teaching-learning, which is an evolutionary optimization algorithm, and coding in MATLAB software, semi-analytical relations to obtain the rate of projectile deviation after Impact on the perforated plate for each value of hole diameter, projectile diameter, projectile velocity and the amount of overlap is obtained. Finally, a comparison is made between the experimental, numerical and equation results. And this indicates a good match between the results.
Keywords: Projectile, Perforated plate, Deflection, Teaching learning based optimization -
در مطالعه ی حاضر، یک روش جدید به روزرسانی مدل بر مبنای پارامترهای مودال اصلی سازه (بسامدهای طبیعی و شکل های مودی متناظر) ارایه شده است. بدین منظور، یک تابع ترکیبی ارتعاش محور با هدف کمینه سازی اختلاف بین مشخصات سازه ی اندازه گیری شده و مدل تحلیلی تعریف شده است. به منظور کاهش آثار نوفه، یک تابع جریمه بر تابع هدف اعمال شده است. برای حل مسیله ی شناسایی آسیب از الگوریتم بهینه یاب مبتنی بر آموزش و یادگیری استفاده شده است. جهت ارزیابی تابع هدف، سه مثال عددی بررسی شده است. چالش هایی نظیر اثر نوفه و تابع جریمه در نتایج شناسایی آسیب مطالعه شده است. همچنین مطالعه یی برای مقایسه ی تابع هدف پیشنهادی با سه تابع هدف دیگر مبتنی بر اطلاعات مودال انجام شده است. نتایج نشان می دهند که روش پیشنهادی با اعمال تابع جریمه و به کار بردن الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری می تواند یک روش قابل اطمینان و پایدار در شناسایی آسیب سازه ها محسوب شود.
کلید واژگان: شناسایی آسیب، روش به روزرسانی مدل، پارامترهای مودال، تابع هدف، الگوریتم بهینه سازی مبتنی بر آموزش و یادگیریEngineering structures are prone to damage over their service life as a result of natural disaster so that damage spreading may lead to many casualties. In order to prevent these catastrophic events, early damage detection must be carried out. By considering these issues, numerous structural damage detection methods have been proposed by many researchers in the last few decades. Among all sorts of methods developed for damage detection in structures, vibration-based methods due to their simplicity and applicability are highly favored by many researchers. The basic conceptual of the vibration-based methods is that modal parameters (natural frequencies and their associated mode shapes) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause changes in the modal properties. A class of vibration-based methods is identified and damages are quantified using the model updating approach. In these methods, an objective function defined in terms of the discrepancies between the analytical model and real structural system is minimized as an optimization problem. In this paper, a novel model updating method is presented based on a structure’s main modal parameters (natural frequencies and their corresponding modal shapes). For this purpose, a hybrid vibration-based objective function is proposed to minimize the differences between the structure’s properties and the analytical model. A penalty function is integrated into the objective function to reduce the effects of noise in damage detection and uncertainties in the assessment procedure. The Teaching-Learning-Based Optimization (TLBO) algorithm is applied to solve this problem as an optimization problem. This algorithm is inspired by the traditional learning process of students in school. The two main stages of this algorithm are the effect of the teacher’s knowledge on student learning by the convergence strategy and students learning from each other by the divergence strategy. To evaluate the applicability of the proposed objective function in detecting the location and intensity of the damage, three numerical cases are considered. These cases include an 8-story shear frame, a continuous beam, and a spatial truss. Different challenges such as the effect of noise on measured data and the effect of the penalty-function on results of damage detection were considered. Furthermore, a comparative study is investigated between the proposed objective function and three other objective functions developed based the main model parameters. The results demonstrated that the proposed method is a reliable and stable technique in damage prognosis in structures.
Keywords: Damage detection, model updating method, modal parameters, objective function, Teaching–learning-based optimization -
Scientia Iranica, Volume:28 Issue: 2, Mar-Apr 2021, PP 1030 -1048The last decade has seen an important role of container terminals in the global trade centers. By another point of view, the high cost of quay cranes on the other hand is a motivation for a set of real-world problems including of Quay Crane Assignment Problem (QCAP) and the Quay Crane Scheduling Problem (QCSP) in the hotspot of research. The main innovation of this proposal is to integrate both QCAP and QCSP to improve Quay Crane (QC) performance by an optimization goal, i.e., QCASP. A real case study in Iran has been applied to validate the proposed problem which has been formulated by a mixed integer linear programming (MILP). Due to inherent complexity of problem proposed in the real-world cases, the Teaching-Learning-Based-Optimization (TLBO) algorithm has been used to find an optimal/global solution in a reasonable time. The applied TLBO has been tuned by Taguchi method and validated in small instances in comparison with an exact method. The computational results show that our proposed TLBO algorithm can solve QCASP, especially in large size instances, successfully. Finally, a set of managerial implications has been recommended to consider the benefits of proposed methodology and algorithm regarding the real case study presentedKeywords: Quay crane assignment, Quay crane scheduling, container terminals, teaching-learning-based optimization
-
Journal of the Structural Engineering and Geotechnics, Volume:10 Issue: 1, Winter and Spring 2020, PP 55 -72In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Discrete Hybrid Teaching-Learning Based Optimization (DHTLBO) that is applied to optimization of truss structures with discrete variables. This new method is consisted of two parts: in the first part the TLBO algorithm applied as conventional TLBO for local optimization, in the second stage the HS algorithm is applied to global optimization and exploring all the unknown places in the search space. The new hybrid algorithm is employed to minimize the total weight of structures. Therefore, the objective function consists of member’s weight, which is depends on the form of stress and deflection limits. To demonstrate the efficiency and robustness of this new algorithm several truss structures which are optimized by most researchers are presented and then their results are compared to other meta-heuristic algorithm and TLBO and HS standard algorithms.Keywords: Discrete variables, Teaching-learning-based optimization, Harmony search, Size optimization, Truss structures, Structural optimization, Meta-heuristic algorithm
-
This study deals with inverse approach for damage detection in a double-beam system. A double-beam system made of two parallel beams connected through an elastic layer. Degradation in stiffness of beams element, crack occurrence and partly destruction of inner layer has been considered as different types of damage. The time domain acceleration response of the system measured and proper orthogonal decomposition has been applied to the collected data in order to derive the proper orthogonal values (POV) and proper orthogonal modes (POM) of the system. Effect of single damage in different locations on the POV has been analyzed and an objective function has been defined using the dominant POV and POM of each beam separately. In order to increase robustness of the method against noise, the objective function enriched by adding statistical property of time domain response. The teaching-learning based optimization algorithm has been employed to solve optimization problem. Efficiency of the proposed method for detecting single and multiple damages in the system demonstrated with and without noise. Simulation results show good accuracy of the proposed method for detection single and multiple damages of different types in the system.Keywords: Double-beam system, Proper orthogonal decomposition, crack, Damage, Teaching-Learning based optimization
-
Journal of Optimization in Industrial Engineering, Volume:13 Issue: 27, Winter and Spring 2020, PP 177 -194The Teaching-Learning-Based Optimization (TLBO) algorithm is a new meta-heuristic algorithm which recently received more attention in various fields of science. The TLBO algorithm divided into two phases: Teacher phase and student phase; In the first phase a teacher tries to teach the student to improve the class level, then in the second phase, students increase their level by interacting among themselves. But, due to the lack of additional parameter to calculate the distance between the teacher and the mean of students, it is easily trapped at the local optimum and make it unable to reach the best global for some difficult problems. Since the Harmony Search (HS) algorithm has a strong exploration and it can explore all unknown places in the search space, it is an appropriate complement to improve the optimization process. Thus, based on these algorithms, they are merged to improve TLBO disadvantages for solving the structural problems. The objective function of the problems is the total weight of whole members which depends on the strength and displacement limits. Indeed, to avoid violating the limits, the penalty function applied in the form of stress and displacement limits. To show the superiority of the new hybrid algorithm to previous well-known methods, several benchmark truss structures are presented. The results of the hybrid algorithm indicate that the new algorithm has shown good performance.Keywords: Teaching-learning-based optimization, Harmony search, Size optimization, Structural optimization, Continuous variables
-
Journal of Optimization in Industrial Engineering, Volume:13 Issue: 27, Winter and Spring 2020, PP 123 -130Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product increases, the number of feasible sequences increase exponentially, consequently the best sequence is to be chosen. This paper aims at presenting the application of a newly developed meta-heuristic called the hybrid teaching–learning-based optimization (HTLBO) as a global search technique for the quick identification of the optimal sequence of operations with consideration of various feasibility constraints. To do so, three case studies have been conducted to evaluate the performance of the proposed algorithm and a comparison between the proposed algorithm and the previous searches from the literature has been made. The results show that HTLBO performs well in operation sequencing problem.Keywords: Teaching–learning-based optimization, Computer-aided process planning (CAPP), Operation sequence, Hamilton path
-
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, then the FJSP comes under integrated approach. Otherwise, it becomes a hierarchical approach. Very less research has been done in the past on FJSP problem as it is an NP-hard (non-deterministic polynomial time hard) problem and very difficult to solve till date. Further, very less focus has been given to solve the FJSP using an integrated approach. So an attempt has been made to solve FJSP based on integrated approach using TLBO. Teaching–learning-based optimization is a meta-heuristic algorithm which does not have any algorithm-specific parameters that are to be tuned in comparison to other meta-heuristics. Therefore, it can be considered as an efficient algorithm. As best student of the class is considered as teacher, after few iterations all the students learn and reach the same knowledge level, due to which there is a loss in diversity in the population. So, like many meta-heuristics, TLBO also has a tendency to get trapped at the local optimum. To avoid this limitation, a new local search technique followed by a mutation strategy (from genetic algorithm) is incorporated to TLBO to improve the quality of the solution and to maintain diversity, respectively, in the population. Tests have been carried out on all Kacem’s instances and Brandimarte's data instances to calculate makespan. Results show that TLBO outperformed many other algorithms and can be a competitive method for solving the FJSP.
Keywords: Flexible job shop scheduling, Local search, Makespan, Meta-heuristics, Teaching -learning-based optimization -
International Journal of Optimization in Civil Engineering, Volume:10 Issue: 1, Winter 2020, PP 155 -180
Imperialist Competitive Algorithm, ICA is a meta-heuristic which simulates collapse of weak empires by more powerful ones that take possession of their colonies. In order to enhance performance, ICA is hybridized with proper features of Teaching-Learning-Based Optimization, TLBO. In addition, ICA walks are modified with an extra term to intensify looking for the global best solution. The number of control parameters and consequent tuning effort has been reduced in the proposed Imperialist Competitive Learner-Based Optimization, ICLBO with respect to ICA and several other methods. Efficiency and effectiveness of ICLBO is further evaluated treating a number of test functions in addition to continuous and discrete engineering problems. It is discussed and traced that balancing between exploration and exploitation is enhanced due to the proposed hybridization. Numerical results exhibit superior performance of ICLBO vs. ICA and a variety of other well-known meta-heuristics.
Keywords: hybrid optimization method, imperialist competitive algorithm, teaching-learning-based optimization, parameter reduction -
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching–learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Keywords: Flexible flow shop, JAYA algorithm, Makespan, Meta-heuristics, Teaching- learning-based optimization -
Journal of Electrical and Computer Engineering Innovations, Volume:5 Issue: 2, Summer-Autumn 2017, PP 163 -170Power systems are subjected to smallsignal oscillations that can be caused by sudden change in the value of large loads. To avoid the dangers of these oscillations, the Power System Stabilizers (PSSs) are used. When the PSSs can not be effective enough, installation of the Thyristorbased compensators to increase the oscillations damping is a suitable method. In this paper, a Static Synchronous Series Compensator (SSSC) is used in SingleMachine InfiniteBus (SMIB). To control the signal of the output voltage of SSSC, a robust controller is used. Also, we proposed a hybrid control method to adjust the PSS voltage using TeachingLearning Based Optimization (TLBO) algorithm and Fuzzy Inference System (FIS). Objective functions of designing parameters are based on Integral of Time multiplied by Absolute value of the Error (ITAE). The timevariations of angular speed deviations are investigated in different modes, including: with SSSC/PSS, without SSSC/PSS, different input mechanical power, and different system parameters.Keywords: Small–signal oscillations, Power system stabilizer, Static synchronous series compensator, Teaching–learning based optimization, Fuzzy inference system
-
International Journal of Industrial Engineering and Productional Research, Volume:28 Issue: 2, Jun 2017, PP 151 -161A teaching-learning-based optimization (TLBO) algorithm is a new population-based algorithm applied in some applications in the literature successfully. Moreover, a genetic algorithm (GA) is a popular tool employed widely in many disciplines of engineering. In this paper, a hybrid GA-TLBO algorithm is proposed for the capacitated three-stage supply chain network design (SCND) problem. The SCND problem as a strategic level decision-making problem in supply chain management is an NP-hard class of computational complexity. To escape infeasible solutions emerged in the problem of interest due to realistic constraints, combination of a random key and priority-base encoding scheme is also used. To assess the quality of the proposed hybrid GA-TLBO algorithm, some numerical examples are conducted. Then, the results are compared with the GA, TLBO, differential evolution (DE) and branch-and -bound algorithms. Finally, the conclusion is provided.Keywords: Supply chain network design, Teaching learning-based optimization, Genetic algorithm, Priority-base encoding
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.