به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

malware detection

در نشریات گروه برق
تکرار جستجوی کلیدواژه malware detection در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه malware detection در مقالات مجلات علمی
  • علی اکبر تجری سیاه مرزکوه*، علی رحیمی حسین آباد
    استفاده از تلفن های همراه با سیستم عامل اندروید روز به روز در حال گسترش است. سیستم عامل اندروید به خودی خود ابزار قدرتمندی برای تشخیص بدافزار ندارد. از این رو، مهاجمان به راحتی از طریق گوشی تلفن همراه افراد وارد حریم خصوصی آنها شده و آنها را در معرض خطر جدی قرار می دهند. تاکنون تحقیقات زیادی بر روی تشخیص بدافزار صورت گرفته است. یکی از مشکلات عمده این راهکارها، دقت پایین در تشخیص چند کلاسه روی مجموعه داده ها و یا عدم حصول نتیجه مطلوب در هر دو نوع تشخیص دودویی و چند کلاسه است. در این مقاله با استفاده از شبکه عصبی کانولوشن (CNN) و تغییر در تعداد لایه های مختلف، سعی کرده ایم تا حداکثر تعداد ویژگی های مهم را از مجموعه داده استخراج نماییم. در فاز طبقه بندی داده ها نیز از الگوریتم یادگیری شبکه حافظه طولانی کوتاه مدت (LSTM) استفاده می کنیم تا با آزمایش آن بر روی ویژگی های انتخاب شده، داده ها با حداکثر دقت ممکن طبقه بندی شوند. نتایج آزمایش بر روی مجموعه داده جدید MalMemAnalysis-2022 نشان می دهد که استفاده از این دو الگوریتم و تغییر در تعداد لایه ها می تواند در بهترین حالت به ترتیب منجر به دقت های 99.99% و 71.99% در دسته-بندی دودویی و چند کلاسه در تشخیص بدافزار شود که نسبت به روش های موجود برتری دارد.
    کلید واژگان: تشخیص بدافزار، شبکه عصبی کانولوشن (CNN)، شبکه حافظه طولانی کوتاه مدت (LSTM)، مجموعه داده Malmemanalysis-2022
    Aliakbar Tajari Siahmarzkooh *, Ali Rahimi Hosseinabad
    The use of mobile phones with Android operating system is expanding day by day. Android itself does not have a powerful malware detection tool. Therefore, attackers easily enter people's privacy through their mobile phones and put them at serious risk. So far, a lot of research has been done on malware detection. One of the main problems of these solutions is the low accuracy in multi-class detection on the dataset or the failure to achieve the desired result in both types of binary and multi-class detection. In this paper, by using Convolutional Neural Network (CNN) and changing the number of different layers, we have tried to extract the maximum number of important features from the dataset. In the data classification phase, we use the Deep Learning-based algorithm named Long Short-Term Memory (LSTM) to classify the data with the maximum possible accuracy by testing it on the selected features. The test results on the new MalMemAnalysis-2022 dataset show that the use of these two algorithms and the change in the number of layers can lead to 99.99% and 99.71% accuracies in binary and multi-class classification in malware detection, respectively, which is superior to existing methods.
    Keywords: Malware Detection, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Malmemanalysis-2022 Dataset
  • Mahdieh Maazalahi, Soodeh Hosseini *

    Detecting and preventing malware infections in systems is become a critical necessity. This paper presents a hybrid method for malware detection, utilizing data mining algorithms such as simulated annealing (SA), support vector machine (SVM), genetic algorithm (GA), and K-means. The proposed method combines these algorithms to achieve effective malware detection. Initially, the SA-SVM method is employed for feature selection, where the SVM algorithm identifies the best features, and the SA algorithm calculates the SVM parameters. Subsequently, the GA-K-means method is utilized to identify attacks. The GA algorithm selects the best chromosome for cluster centers, and the K-means algorithm has applied to identify malware. To evaluate the performance of the proposed method, two datasets, Andro-Autopsy and CICMalDroid 2020, have been utilized. The evaluation results demonstrate that the proposed method achieves high true positive rates (0.964, 0.985), true negative rates (0.985, 0.989), low false negative rates (0.036, 0.015), and false positive rates (0.022, 0.043). This indicates that the method effectively detects malware while reasonably minimizing false identifications.

    Keywords: Malware detection, Hybrid method, Data Mining algorithms, Feature Selection
  • Mohammed Abdulkreem Mohammed, Drai Ahmed Smait, Mustafa Al-Tahai, Israa S. Kamil, Kadhum Al-Majdi, Shahad K. Khaleel

    Through the use of malware, particularly JavaScript, cybercriminals have turned online applications into one of their main targets for impersonation. Detection of such dangerous code in real-time, therefore, becomes crucial in order to prevent any harmful action. By categorizing the salient characteristics of the malicious code, this study suggests an effective technique for identifying malicious Java scripts that were previously unknown, employing an interceptor on the client side. By employing the wrapper approach for dimensionality reduction, a feature subset was generated. In this paper, we propose an approach for handling the malware detection task in imbalanced data situations. Our approach utilizes two main imbalanced solutions namely, Synthetic Minority Over Sampling Technique (SMOTE) and Tomek Links with the object of augmenting the data and then applying a Deep Neural Network (DNN) for classifying the scripts. The conducted experiments demonstrate the efficient performance of our approach and it achieves an accuracy of 94.00%.

    Keywords: Malware Detection, Imbalanced Data, Convolutional Neural Networks, SMOTE, Tomek Links
  • Somayeh Mozafari, Amir Jalaly Bidgoly *
    Today, with the advancement of science and technology, the use of smartphones has become very common, and the Android operating system has been able to gain lots of popularity in the meantime. However, these devices face manysecurity challenges, including malware. Malware may cause many problems in both the security and privacy of users. So far, the state-of-the-art method in malware detection is based on deep learning, however, this approach requires a lot of computing resources and leads to high battery usage, which is unacceptable in smartphone devices. This paper proposes the knowledge distillation approach for lightening android malware detection. To this end, first, a heavy model is taught and then with the knowledge distillation approach, its knowledge is transferred to a light model called student. To simplify the learning process, soft labels are used here. The resulting model, although slightly less accurate in identification, has a much smaller size than the heavier model. Moreover, ensemble learning was proposed to recover the dropped accuracy. We have tested the proposed approach on CISC datasets including dynamic and static features, and the results show that the proposed method is not only able to lighten the model up to 99%, but also maintain the accuracy of the lightened model to the extent of the heavy model.
    Keywords: Android, Deep Learning, Ensemble Learning, Knowledge Distillation, Lightning, Malware Detection
  • Qasim Khlaif Kadhim, Ahmed Qassem Ali Sharhan Al-Sudani, Inas Amjed Almani, Tawfeeq Alghazali, Hasan Khalid Dabis, Atheer Taha Mohammed, Saad Ghazi Talib, Rawnaq Adnan Mahmood, Zahraa Tariq Sahi, Yaqeen S. Mezaal

    The internet of things (IoT) is a promising expansion of the traditional Internet, which provides the foundation for millions of devices to interact with each other. IoT enables these smart devices, such as home appliances, different types of vehicles, sensor controllers, and security cameras, to share information, and this has been successfully done to enhance the quality of user experience. IoT-based mediums in day-to-day life are, in fact, minuscule computational resources, which are adjusted to be thoroughly domain-specific. As a result, monitoring and detecting various attacks on these devices becomes feasible. As the statistics prove, in the Mirai and Brickerbot botnets, Distributed Denial-of-Service (DDoS) attacks have become increasingly ubiquitous. To ameliorate this, in this paper, we propose a novel approach for detecting IoT malware from the preprocessed binary data using transfer learning. Our method comprises two feature extractors, named ResNet101 and VGG16, which learn to classify input data as malicious and non-malicious. The input data is built from preprocessing and converting the binary format of data into gray-scale images. The feature maps obtained from these two models are fused together to further be classified. Extensive experiments exhibit the efficiency of the proposed approach in a well-known dataset, achieving the accuracy, precision, and recall of 96.31%, 95.31%, and 94.80%, respectively.

    Keywords: malware detection, convolutional neural networks, transfer learning, ensemble learning, deep learning
  • فرنوش معنوی، علی حمزه*
    امروزه با گسترش سیستم های کامپیوتری نرم افزارهای مخرب رشد چشم گیری داشته اند. نرم افزارهای مخرب یا بدافزارها، یک برنامه هستند که باهدف آسیب رساندن به کامپیوتر، شبکه، اطلاعات و غیره توسعه داده شده اند. تشخیص نرم افزارها مخرب شاخه ای از امنیت کامپیوتر است که برای تجزیه و تحلیل برنامه های مشکوک، تشخیص نرم افزارهای مخرب و درنهایت، ازبین بردن تهدید در تلاش است. روش های مبتنی بر آپکد، ازجمله روش های متداول در شناسایی بدافزارها می باشد. با توجه به این که همه ی آپکدهای سازنده ی فایل ها برای شناسایی بدافزارها مهم نیستند می توان از برخی از آن ها در فرآیند تشخیص صرف نظر کرد. لذا در این مقاله، برای کلاسه بندی فایل ها از آپکدها استفاده خواهدشد با این تفاوت که فقط چند آپکد مهم و موثر برای تشخیص فایل ها در نظر گرفته خواهدشد. درروش ارایه شده نخست آپکدهای مهم فایل ها شناسایی می شود و با استفاده از این آپکدها، تصاویر ساخته می شود. سپس از این تصاویر، ویژگی استخراج می شود و در مرحله ی کلاسه بندی، مورداستفاده قرار می گیرد. مزیت روش پیشنهادی این است که براساس آپکدهای مهم، تصاویر ساخته می شود و مسئله ی تشخیص بدافزارها، به مسئله ی پردازش و کلاسه بندی تصاویر تبدیل می شود. ازاین رو روش پیشنهادی نسبت به روش های پیشین بهینه تر عمل می کند و پیچیدگی کمتری دارد.
    کلید واژگان: آپکد، بدافزار، تشخیص بدافزار، تصویر، کلاسه بندی
    F. Manavi, A. Hamzeh *
    Today, with the development of computer systems, malware has grown dramatically. Malware is defined as a program that is developed with malicious purpose, such as sabotaging the computer system, information theft or other malicious actions. Malware detection is a branch of computer security which attempts to analyze suspicious programs, detect malware and ultimately eliminate the threat. Opcode-based methods are commonly used in malware detection. Given that, all Opcode are not important for detecting malware, some of them can be ignored in the detection process. In this research, the proposed method is based on Opcode Analysis, but only some of the important and effective Opcodes will be considered for file detection. First, momentous Opcodes of file are identified and employed for generating images. Then, features are extracted from the images in order to accomplish the classification. The advantage of the proposed method is that images are created based on important Opcodes and detecting malware is converted into image classification. Therefore, the proposed method is more optimized compared to the previous methods and also has acceptable accuracy and less complexity.
    Keywords: classification, image, malware, malware detection, opcode
  • فاطمه حسینی، آرش شریفی، میترا میرزارضایی*

    در این مقاله روشی مبتنی بر گراف به عنوان استخراج ویژگی برای دنباله های با طول متغیر پیشنهاد می شود. روش پیشنهادی بدون ثابت کردن طول دنباله ها، با تعیین پر تکرارترین دستورها و گذاشتن باقی دستورها در مجموعه ‘other’ از لحاظ سرعت و حافظه صرفه جویی می کند. با توجه به میزان شباهت ویژگی ها، هر نمونه امتیازی می گیرد و از امتیازات جهت دسته بندی استفاده می شود. برای بهبود نتایج، دو رویکرد پیشنهاد می شود. در رویکرد نخست، ویژگی های استخراج شده از روش های امتیازدهی بر روی آپکد، هگزادسیمال و فراخوانی سیستمی در ورودی دسته بندها ترکیب می شوند. در رویکرد دوم، خروجی دسته بندهای مختلف ترکیب شده و از رای اکثریت استفاده می شود. رویکرد پیشنهادی با دقت 97 % بدافزارهای دگرگون شده رایانه ای از مجموعه vxheaven را نه تنها شناسایی، بلکه دسته بدافزارها را نیز تعیین می کند؛ در حالی که روش هایSSD و HMM تحت شرایط یکسان با دقت 84 % و 80 % توانستند بدافزارها را شناسایی کنند.

    کلید واژگان: آشکارسازی بدافزارها، روش های مبتنی بر گراف، ترکیب دسته بندها، دسته بندی با طول متغیر، ماشین بردار پشتیبان
    Fatemeh Hosseini, Mitra Mirzarezaee*, Arash Sharifi

    In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. According to features and the similarities of them, a score is given to each sample and that is used for classification. To improve the results, the method is not used alone, but in the two approaches, this method is combined with other existing Technique to get better results. In the first approach, which can be considered as a feature extraction, extracted features from scoring techniques (Hidden Markov Model, simple substitution distance and similarity graph) on op-code sequences, hexadecimal sequences and system calls are combined at classifier input. The second approach consists of two steps, in the first step; the scores which obtained from each of the scoring Technique are given to the three support vector machine. The outcomes are combined according to the weight of each Technique and the final decision is taken based on the majority vote. Among the components of the support vector machine, when given a higher weight in the similarity graph method (the proposed method), the result is better, Because the similarity graph method is more accurate than the other two methods. Then, in the second section, considering the strengths and benefits of each classifier, classifier outputs are combined and the majority voting is used. Three methods have been tested for group combinations, including Ensemble Averaging, Bagging, and Boosting. Ensemble Averaging consisting of the combination of four classifiers of random forests, a support vector machine (as obtained in the previous section), K nearest neighbors and naive Bayes, and the final decision is taken based on the majority vote; therefore, it is used as the proposed method. The proposed approach could detect metamorphic malware from Vxheaven set and also determines categories of malware with accuracy of 97%, while the SSD and HMM methods under the same conditions could detect malware with an accuracy of 84% and 80% respectively.

    Keywords: Malware Detection, Graph Techniques, Combining Classifiers, Variable Length Classification, Support vector machine
  • Mahmood Deypir, Mani Saffarnia*

    The security of the mobile devices has become a major issue since hackers target them through malwares in order to harm the systems or gather sensitive information and get access to the systems remotely. Recently, new ways have been introduced to confront malwares and other viruses. Two main techniques for recognizing malwares are dynamic analysis and static analysis. This paper proposes a new method using the static analysis to help improve the accuracy of the malwares in detecting threats faster and with lower processing time. For this purpose, our suggested method has utilized the android application’s main components to recognize the malwares using the machine learning algorithms. Furthermore, our method has used the feature selection algorithms to reduce the processing overload and to enhance the speed and accuracy. Our method have used the following components as the classification features in our suggested algorithms: API calls, Intents, network address and IPs, services and provider, activities and permissions. In addition to these individual features, our method has also employed complex features to improve malware recognition. We have used 123,446 software and 5,561 malwares to evaluate the accuracy and the precision of the suggested method, demonstrating to be 99.4 percent.

    Keywords: Android Security, Malware Detection, Static Analysis, Classification, Machine Learning
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال