IOT-MDEDTL: IoT Malware Detection based on Ensemble Deep Transfer Learning

Article Type:
Research/Original Article (دارای رتبه معتبر)

The internet of things (IoT) is a promising expansion of the traditional Internet, which provides the foundation for millions of devices to interact with each other. IoT enables these smart devices, such as home appliances, different types of vehicles, sensor controllers, and security cameras, to share information, and this has been successfully done to enhance the quality of user experience. IoT-based mediums in day-to-day life are, in fact, minuscule computational resources, which are adjusted to be thoroughly domain-specific. As a result, monitoring and detecting various attacks on these devices becomes feasible. As the statistics prove, in the Mirai and Brickerbot botnets, Distributed Denial-of-Service (DDoS) attacks have become increasingly ubiquitous. To ameliorate this, in this paper, we propose a novel approach for detecting IoT malware from the preprocessed binary data using transfer learning. Our method comprises two feature extractors, named ResNet101 and VGG16, which learn to classify input data as malicious and non-malicious. The input data is built from preprocessing and converting the binary format of data into gray-scale images. The feature maps obtained from these two models are fused together to further be classified. Extensive experiments exhibit the efficiency of the proposed approach in a well-known dataset, achieving the accuracy, precision, and recall of 96.31%, 95.31%, and 94.80%, respectively.

Majlesi Journal of Electrical Engineering, Volume:16 Issue: 3, Sep 2022
47 to 54  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!