pso algorithm
در نشریات گروه برق-
This article discusses about coordination of directional overcurrent relays (DOCRs) in the power system transmission lines. In these relays, 4 characteristics are used as variables to calculate coordination between of them. These 4 variables include PS, TMS, A and B, which are used to obtain optimal coordination between relays. In this article, to obtain optimal coordination, two fault locations are considered. One of them is near the relay (at the 10%-line beginning) and another is fault far from the relay (at the 90%-line end). The problem of coordination of relays is solved and optimized using the PSO optimization algorithm. The proposed method has been tested in the standard distribution 6-Buse IEEE System, and its results are stated. The results of the PSO optimization method that was obtained have been compared with traditional methods such as GA-NLP. Comparing the results of this method with the traditional methods presented in the other articles, found that the presented method obtains more optimal results than other traditional methods. Since the proposed method minimizes the operation time of DOCRs relays. This method is a reliable and effective method for calculating coordination between relays.Keywords: Directional Overcurrent Relays (Docrs), Coordination, PSO Algorithm, 6-Bus IEEE System, TMS, PS, Coordination Time Interval (CTI), Primary, Backup Relay, Near, Far From Relay Fault, GA-NLP
-
Nowadays, the gimbal stabilizes the line of sight and eliminates vibration in systems such as imaging, radar line of sight, and position stabilizers. The gimbal system tries to maintain the system's current state by dealing with the changes made in the system's current state. This system reduces unwanted motion disturbances and vibrations. The most common use of the gimbal system is in modern photography equipment. In this article, a single-axis gimbal stabilizer system that uses a PD_PI fuzzy controller has been investigated and the PSO algorithm has been used to optimize and calculate controller coefficients. The dynamic relations of the gimbal are described and the proposed control system based on the PD_PI fuzzy controller is optimized using the PSO algorithm. The controller coefficients have been optimized with the lowest possible settling time. The comparison of the obtained results shows that this controller has less settling time and much less overshoot than other controllers such as PID and fuzzy PID controllers.
Keywords: Gimbal, Stabilization, Line Of Sight, PSO Algorithm, Inertial Stabilization System, Optimization -
سیستم چند ورودی - چند خروجی انبوه، به عنوان یکی از فناوری های نسل بعدی مخابرات بی سیم شناخته شده است که بهره طیفی بالایی فراهم می کند. به دلیل توزیع متراکم کاربران در سلول های مخابراتی، پشتیبانی از اتصالات گسترده، کاهش تاخیر، کارایی طیفی و کارایی توان بالا به عنوان چالش های اصلی شبکه های بی سیم نسل بعدی شناخته شده اند. استراتژی مناسب برای تخصیص توان به کاربران مختلف یکی از راه های بهبود کارایی طیفی و کارایی توان است. در این مقاله، برای بهبود کارایی طیفی سیستم چند ورودی - چند خروجی انبوه با معماری ترکیبی و بر مبنای پردازش تبدیل فوریه گسسته، دو روش برای تخصیص توان به کاربران پیشنهاد می شود. در روش اول، با هدف بهبود کارایی طیفی کاربران با شرایط کانال ضعیف، به تخصیص ضریب توان ثابت به هر کاربر متناسب با شرایط کانال آن کاربر می پردازیم. در روش دوم به تخصیص ضرایب بهینه توان به کاربران با استفاده از الگوریتم بهینه سازی ازدحام ذرات می پردازیم. همچنین، تاثیر تعداد زنجیره های فرکانس رادیویی، نسبت سیگنال به نویز و تعداد کاربران را روی کارایی طیفی سیستم ارزیابی می کنیم. نتایج شبیه سازی نشان می دهند که دو روش پیشنهادی اختصاص توان، کارایی طیفی کلی سیستم را بهبود می بخشند.
کلید واژگان: سیستم چند ورودی - چند خروجی انبوه، اختصاص توان، الگوریتم بهینه سازی ازدحام ذرات، کارایی طیفیJournal of Iranian Association of Electrical and Electronics Engineers, Volume:21 Issue: 3, 2024, PP 37 -45Massive Multiple Input Multiple Output (MIMO) is recognized as one of the next-generation technologies of wireless communication which provides a high Spectral Efficiency (SE). Due to the dense distribution of users in the communication cells, supporting massive connectivity, low latency, higher SE and Power Efficiency (PE) have been recognized as the main challenges of the next-generation wireless networks. An appropriate strategy for allocating power to different users is one of the ways to enhance the SE and PE. In this paper, to enhance SE of the massive MIMO system with hybrid precoding and based on the Discrete Fourier Transform (DFT) processing, two methods for allocating power to users are proposed. In the first method, in order to enhance the SE of users with poor channel conditions, we assign a constant power coefficient to each user according to the user’s channel conditions. In the second method, we allocate the optimal power coefficients to users by using the Particle Swarm Optimization (PSO) algorithm. Also, we evaluate the effect of the number of radio frequency (RF) chains, the Signal to Noise Ratio (SNR) and the number of users on the SE of the system. Simulation results show that both proposed power allocation methods improve the total SE of the system.
Keywords: Massive MIMO System, Power Allocation, PSO Algorithm, Spectral Efficiency -
Journal of Artificial Intelligence in Electrical Engineering, Volume:12 Issue: 45, Spring 2023, PP 9 -21
Smart Grids are the result of the activation of consumers in the power system and their role in the planning and operation of the power system. The communication, control and measurement infrastructure as a smart communication bridge establishes two-way communication between consumers and the power network and provides the basis for the effective implementation of the load response program as well as direct load control. The purpose of solving the problem of economic load distribution in the power system is to plan the output of production units in such a way as to provide the required load demand with the lowest possible cost. In addition, it satisfies the constraints of equality or inequality of all units. In this research, PSO optimization method is taken into consideration by considering voltage deviation, voltage loss and system load capacity as part of the objective function.
Keywords: Economic Load Flow, Voltage Deviation, System Load Limit, Voltage Losses, PSO Algorithm -
The Load Frequency Control (LFC) has been a major subject in electric power system and is be-coming more significant system in recent decades. This paper targets to investigate the problem of LFC in interconnected power systems in order to obtain robust state. In this paper, a design method for a robust controller, based on PID, has been presented to overcome the robustness against uncertainties. To achieve optimal PID, Particle Swarm Optimization (PSO) has been em-ployed to obtain coefficients of the SMC. Variations of uncertain parameters are considered be-tween -40% and +40% of nominal values. The simulation results show that the system response with the proposed PID is better than the conventional PID controller. It is also shown that the transient response of the tie line power can be improved.
Keywords: Load Frequency Control, PID Controller, PSO Algorithm -
In the microgrids, it can be used from the renewable energy resources (RERs) such as photovolta-ic panels, wind turbines, wave energy converters and current type tidal turbines to reduce the greenhouse gas (GHG) emission arisen from fossil fuel-based generation units. However, the generated electrical power of these RERs are dependent on the wave height and wave period, solar radiation, the wind speed, and the tidal current speed. Due to the wide variation in the RERs, the generated electrical power of these generation units changes a lot and so, to supply the local load in the isolated microgrid, the conventional generation units and the energy storage sys-tems (ESSs) can be utilized. In this paper, optimal scheduling of a microgrid containing conven-tional generation units, ESS and RERs including wind turbines, photovoltaic panels, current type tidal turbines and wave energy converters is performed to determine the generated power of each generation unit provided that the cost function is minimum. In the cost function, the operation cost of the generation units based on fossil fuel and the penalty cost associated to the load cur-tailment as the reliability cost are considered and using of the particle swarm optimization (PSO) algorithm, the cost function is minimized. To study the capability and effectiveness of the pre-sented approach, the numerical results associated to the optimal scheduling of a microgrid con-taining battery, RERs, and conventional units are presented.
Keywords: Reliability, Microgrid, PSO Algorithm, Variation, Optimal Scheduling -
Statistical process monitoring, maintenance policy, and production have commonly been studied separately in the literature, whereas their integration can lead to more favorable conditions for the entire production system. Among all studies on integrated models, the underlying process is assumed to generate independent data. However, there are practical examples in which this assumption is violated because of the extraction of correlation patterns. Autocorrelation causes numerous false alarms when the process is in the in-control state or makes the traditional control charts react slowly to the detection of an out-of-control state. The auto-regressive moving average (ARMA) control chart is selected as an effective tool for monitoring autocorrelated data. Therefore, an integrated model subject to some constraints is proposed to determine the optimal decision variables of the ARMA control chart, economic production quantity, and maintenance policy in the presence of autocorrelated data. Due to the complexity of the model, a particle swarm optimization (PSO) algorithm is applied to search for optimal decision variables. An industrial example and some comparisons are provided for more investigations. Moreover, sensitivity analysis is carried out to study the effects of model parameters on the solution of the economic-statistical design.Keywords: economic-statistical design, Economic production quantity, maintenance policy, ARMA control chart, pso algorithm
-
This paper contributes to the design, modeling, and planning of a distributed generation (DG) network with wind and solar by means of the particle swarm algorithm (PSO) algorithm in the IEEE 33-bus network, aiming to minimize The results indicate an adequate performance in a variety of environments, and the presence of distributed wind/solar energy generators decreases network stress by feeding loads locally. These systems (wind and solar) can be used in remote areas without power networks, or even in areas where there is a tendency to use renewable energy despite the presence of a power network. They can also supply the output load for most of the day and night. Probability distribution functions are used, and the outputs are expressed as probability density distribution functions instead of absolute numbers. In addition, there is a high degree of uncertainty regarding the state of the system, which is an associated renewable energy source within the power system elements. By means of MATLAB software, the proposed method is implemented in order to ensure effectiveness and validate the results.
Keywords: Distributed Generations, Uncertainty of Resources, Optimization, PSO Algorithm -
امروزه با افزایش حجم تولید داده، توجه به الگوریتمهای یادگیری ماشین جهت استخراج دانش از دادههای خام افزایش یافته است. داده خام معمولا دارای ویژگیهای اضافی یا تکراری است که بر روی عملکرد الگوریتمهای یادگیری تاثیر میگذارد. جهت افزایش کارایی و کاهش هزینه محاسباتی الگوریتمهای یادگیری ماشین، از الگوریتمهای انتخاب ویژگی استفاده میشود که روشهای متنوعی برای انتخاب ویژگی ارایه شده است. از جمله روشهای انتخاب ویژگی، الگوریتمهای تکاملی هستند که به دلیل قدرت بهینهسازی سراسری خود مورد توجه قرار گرفتهاند. الگوریتمهای تکاملی بسیاری برای حل مسیله انتخاب ویژگی ارایه شده که بیشتر آنها روی فضای هدف تمرکز داشتهاند. فضای مسیله نیز میتواند اطلاعات مهمی برای حل مسیله انتخاب ویژگی ارایه دهد. از آنجایی که الگوریتمهای تکاملی از مشکل عدم خروج از نقطه بهینه محلی رنج میبرند، ارایه یک مکانیزم موثر برای خروج از نقطه بهینه محلی ضروری است. در این مقاله از الگوریتم تکاملی PSO با تابع چندهدفه برای انتخاب ویژگی استفاده شده که در آن یک روش جدید جهش که از امتیاز ویژگیهای ذرات استفاده میکند، به همراه نخبهگرایی برای خروج از نقاط بهینه محلی ارایه گردیده است. الگوریتم ارایهشده بر روی مجموعه دادههای مختلف تست و با الگوریتمهای موجود بررسی شده است. نتایج شبیهسازیها نشان میدهند که روش پیشنهادی در مقایسه با روش جدید RFPSOFS بهبود خطای 20%، 11%، 85% و 7% به ترتیب در دیتاستهای Isolet، Musk، Madelon و Arrhythmia دارد.
کلید واژگان: انتخاب ویژگی، بهینه سازی چندهدفه، الگوریتم PSO، مجموع وزن دار تطبیق پذیر، جهش هوشمند، نخبه گراییToday, with the increase in data production volume, attention to machine learning algorithms to extract knowledge from raw data has increased. Raw data usually has redundant or irrelevant features that affect the performance of learning algorithms. Feature selection algorithms are used to improve efficiency and reduce the computational cost of machine learning algorithms. A variety of methods for selecting features are provided. Among the feature selection methods are evolutionary algorithms that have been considered because of their global optimization power. Many evolutionary algorithms have been proposed to solve the feature selection problem, most of which have focused on the target space. The problem space can also provide vital information for solving the feature selection problem. Since evolutionary algorithms suffer from the pain of not leaving the local optimal point, it is necessary to provide an effective mechanism for leaving the local optimal point. This paper uses the PSO evolutionary algorithm with a multi-objective function. In the proposed algorithm, a new mutation method that uses the particle feature score is proposed along with elitism to exit the local optimal points. The proposed algorithm is tested on different datasets and examined with existing algorithms. The simulation results show that the proposed method has an error reduction of 20%, 11%, 85%, and 7% in the Isolet, Musk, Madelon, and Arrhythmia datasets, respectively, compared to the new RFPSOFS method.
Keywords: Feature selection, multi-objective optimization, PSO algorithm, adaptive weight sum method, intelligent mutation, elitism -
International Journal of Industrial Electronics, Control and Optimization, Volume:5 Issue: 3, Summer 2022, PP 269 -277In this paper, an ultrasonic horn based on the PSO algorithm for emulsion homogenization is optimized and fabricated. The application of various ultrasonic instruments such as horns in different industrial procedures is increasingly expanding and developing. Horn is a tool that has played a crucial role in the energy transfer to fluid. Longitudinal frequency, vibration amplitude, length-to-diameter ratio, a distance of frequency from other frequency modes, wide distribution of cavitation along with the horn’s length, and increasing the area of acoustic energy transfer are the main characteristics of the horn design procedure. Therefore considering these important features with using the PSO algorithm and electro-mechanical circuit method to finding resonance frequency, the design procedure of the optimized horn is performed. The definition of the objective function is based on the horn’s amplification factor, and the rest of the other characteristics are defined as design constraints. The simulation results show a 15% improvement in the natural frequency compared to the target frequency and a suitable frequency distance of 2.5 kHz between the previous and next modes. According to the barbell part of the horn, the amplification factor of 14 was obtained for the proposed horn, the frequency and amplitude of the vibration were evaluated. The experimental results were very close in terms of amplification factor and frequency to the simulation results with reasonable accuracy.Keywords: Optimization, Ultrasonic Instrument, Barbell Horn, PSO Algorithm, Electro-Mechanical Circuit Method
-
One of the issues of reliable performance in the power grid is the existence of electromechanical oscillations between interconnected generators. The number of generators participating in each electromechanical oscillation mode and the frequency oscillation depends on the structure and function of the power grid. In this paper, to improve the transient nature of the network and damping electromechanical fluctuations, a decentralized robust adaptive control method based on dynamic programming has been used to design a stabilizing power system and a complementary static var compensator (SVC) controller. By applying a single line to ground fault in the network, the robustness of the designed control systems is demonstrated. Also, the simulation results of the method used in this paper are compared with controllers whose parameters are adjusted using the PSO algorithm. The simulation results show the superiority of the decentralized robust adaptive control method based on dynamic programming for the stabilizing design of the power system and the complementary SVC controller. The performance of the control method is tested using the IEEE 16-machine, 68-bus, 5-area is verified with time domain simulation.Keywords: PSO Algorithm, Dynamic programming, PSS, static VAR compensator
-
Detection of attacks and anomalies is one of the new challenges in promoting e-commerce technologies. Detecting anomalies of a network and the process of detecting destructive activities in e-commerce can be executed by analyzing the behavior of network traffic. Data mining systems/techniques are used extensively in intrusion detection systems (IDS) in order to detect anomalies. Reducing the size/dimensions of features plays an important role in intrusion detection since detecting anomalies, which are features of network traffic with high dimensions, is a time-consuming process. Choosing suitable and accurate features influences the speed of the proposed task/work analysis, resulting in an improved speed of detection. The present papers utilize a neural network for deep learning to detect e-commerce attacks and anomalies of e-commerce systems. Overfitting is a common event in multi-layer neural networks. In this paper, features are reduced by the firefly algorithm (FA) to avoid this effect. Simulation results illustrate that a neural network system performs with high accuracy using feature reduction. Ultimately, the neural network structure is optimized by using particle swarm optimization (PSO) to increase the accuracy of attack detection capability.
Keywords: Firefly Algorithm, Attack Detection, Neural Network, PSO Algorithm -
یکی از روش های کاهش هزینه تولید و بهبود عملکرد ژنراتورهای شبکه، حل مسئله پخش بار بهینه مبتنی بر مدیریت گرفتگی خطوط است. تا از این طریق بتوان تراکم خطوط و به دنبال آن قیمت نهایی محلی (LMP) را کاهش داد. از آنجاکه پخش بار، دارای معادلاتی غیرخطی است در این مقاله از الگوریتم بهینه سازی ازدحام ذرات (PSO) در حل مسئله استفاده شده است. در اینجا سعی شده با لحاظ کردن دو تکنیک، عملکرد الگوریتم PSO را بهبود بخشید. اولین تکنیک استفاده از مولد آشوب به منظور جلوگیری از گیرکردن ذرات PSO در نقاط مینیم محلی و دومی لحاظ کردن ضریب حساسیت توان (GSF) در ساختار الگوریتم بهینه سازی ازدحام ذرات وزن شده (WPSO) است تا از این طریق بتوان به صورت هم زمان توان عبوری از خطوط شبکه را محاسبه نموده و پخش بار واقعی به دست آورد. نهایتا خروجی الگوریتم شامل مقادیر ولتاژ باس ها، تلفات خطوط، توان تزریقی به باس ها، توان عبوری از خطوط، کل هزینه تولید، تعیین قیمت برق به صورت یکنواخت (UMP) یا LMP بسته به پر شدن ظرفیت خطوط و محاسبه سود ژنراتورها خواهد بود. ضمنا به منظور بررسی دقت الگوریتم، روش پیشنهادی روی شبکه های استاندارد 14 شینه، 30 شینه، 57 شینهIEEE آزموده شده که نتایج آن نشان دهنده افزایش سرعت و دقت الگوریتم در مقایسه با دیگر روش ها بوده است.
کلید واژگان: پخش بار بهینه، قیمت نهایی محلی، ضریب حساسیت توان، الگوریتم PSOAway to decrease the costs of generation and improve the performance of the grid generator, solving the problem of OPF based on line congestion management. As the power flow equation is nonlinear, this paper has performed the PSO algorithm to solve the OPF problem. By considering two technique this paper has performed the PSO algorithm for improving the performance. The first technique is to use a chaos generator to prevent PSO particles from sticking to local minimum points and the second is to consider the GSF in the WPSO algorithm structure so that the power passing through network lines can be simultaneously calculated and real power flow. Finally, the result of WPSO-GSF algorithm which includes the bus voltage values, line losses, injection power to b buses, power passing through lines, total generation cost, setting electricity prices in two ways, UMP or LMP, depending on filling line capacity and calculating generatorschr('39') profits has carried out .and also, to check the accuracy of the algorithm, the proposed method has been tested on IEEE 14-BUS, 30-BUS, 57-BUS standard networks, the results which indicate an increase in the speed and accuracy of the WPSO-GSF algorithm compared to other methods in improving the OPF problem.
Keywords: Locational marginal price, Optimal power flow, Congestion management, PSO algorithm, Generating scaling factor -
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathe-matical model for calculations. The architecture of the water-air amphibious aerial vehicle is especially crucial to the whole product, which impacts its performances in many different sides. a new architecture of low-submerged ducted water-air amphibious aerial vehi-cle with double rotor wings is designed on the basis of the studies home and abroad. Both of the system architecture and the dynamic model are established and both of the water-flow and airflow are analyzed with Fluent based on the 3D structure models built by Solidworks software, which mainly aims at the impact factors of body thrust force and lift force. And the CFD simulations of the layout are also accomplished based on the former analysis results as well. Compared with the results from PSO algorithm, kriging model and orthogonal test, the most suitable shape architecture is optimized. Finally, the optimized results were simulated by Fluent. The results show that the Global optimization thought based on the Kriging model and the PSO algorithm significantly improve the lift and drive performance of cross-domain aircraft and computer operational efficiency.Keywords: Cross-domain aircraft, Kriging model, pso algorithm, Orthogonal test, Global optimization
-
Detecting attacks and anomalies is one of the new challenges in commercializing and advancing IOT technology. One of the most effective methods for detecting attacks is the machine learning algorithms. Until now, many ML models have been suggested to detect attacks and anomalies, all of them use experimental data to model the detection process. One of the most popular and efficient ML algorithms is the artificial neural network. Neural networks also have different classical learning methods. But all of these classic learning methods are problematic for systems that have a lot of local optimized points or have a very complex target function so that they get stuck in local optimal points and are unable to find the global optimal point. The use of evolutionary optimization algorithms for neural network training can be an effective and interesting method. These algorithms have the capability to solve very complex problems with multi-purposed functions and high constraints. Among the evolutionary algorithms, the particle swarm optimization algorithm is fast and popular. Hence, in this article, we use this algorithm to train the neural network to detect attacks and anomalies of the Internet of Things system. Although the PSO algorithm has so many merits, in some cases it may reduce population diversity, resulting in premature convergence. So, in order to solve this problem, we make use of the TLBO algorithm and also, we show that in some cases, up to 90% accuracy of attack detection can be obtained.Keywords: Attack detection, Neural network, PSO Algorithm, Fuzzy rule, Adaptive Formulation, TLBO Algorithm
-
شمار زیادی از موتورهای الکتریکی که همه ساله در جهان ساخته می شوند، موتورهای سری کوچک کموتاتوری AC هستند. از اینرو طراحی بهینه این نوع ماشین ها منجر به صرفه جویی قابل توجهی در هزینه های ساخت نسبت به روش های سنتی طراحی از طریق آزمون و خطا می شود. در این مقاله، از یک روش هوشمند مبتنی بر الگوریتم بهینه سازی ازدحام ذرات PSO برای طراحی بهینه موتور سری کموتاتوری AC یونیورسال، استفاده شده است. از دیدگاه تولید کننده بهینه ترین طراحی، ارزان ترین و کم هزینه ترین موتور تولید شده است، یک تابع هدف به منظور کاهش هزینه ساخت موتور و یافتن ابعاد بهینه با قید توان خروجی ثابت موتور به کار رفته است. ترکیبی از پارامترهای هندسی و نقطه کار موتور، به عنوان تابع هدف بهینه سازی در نظر گرفته شده است. برای نشان دادن عملکرد بالای روش ارایه شده، نتایج بهینه سازی توسط الگوریتم PSO با الگوریتم Firefly مقایسه شده اند. همچنین برای اعتبارسنجی نتایج به دست آمده در بخش طراحی، با به کارگیری نرم افزار ماکسول و با استفاده از روش آنالیز اجزای محدود، موتور یونیورسال نمونه در فضای دوبعدی نرم افزار ماکسول پیاده سازی شده است. نتایج شبیه سازی ها، استحکام ، انعطاف پذیری بالا و کارآمدی روش ارایه شده برای طراحی بهینه موتور یونیورسال را نشان می دهند.
کلید واژگان: طراحی بهینه، موتور سری کموتاتوری AC، الگوریتم بهینه سازی ازدحام ذرات، PSO، روش اجزای محدودJournal of Iranian Association of Electrical and Electronics Engineers, Volume:17 Issue: 2, 2020, PP 99 -111A significant number of electrical motors producing annually are on the basis of small AC commutating series motor. The application of such motors is more considered in some appliances like vacuum cleaners, mixers, juicer machines, drills and etc. Therefore, regarding the trial and error mechanism, a proper design procedure of such types of electrical machines eventuates to a significant decline in saving the overall manufacturing cost. Hence, in this paper through a smart optimizing method based on particle swarm optimization (PSO) algorithm, a design consideration for an universal AC commutating series motor is presented. By the definition, a combination of geometric parameters and operating point of motor is used as the cost function of the proposed optimizing method. Here, in order to show the effectiveness of the proposed method, the overall optimizing results derived from the PSO algorithm will be compared with its counterpart based on Firefly algorithm. Also, to further confirm the obtained results from the proposed designing procedure, the design of a sample universal motor is implemented into the two-dimension Maxwell software with a contribution of finite element analysis. The simulation results show the robustness and high flexibility of the proposed method.
Keywords: Optimized designing, universal AC series motor, particle swarm optimization, PSO algorithm, finite element method, FEM -
Due to the high amounts of sugarcane residue or bagasse which was produced by sugarcane plants in Iran, this study was aimed to optimize power generation from bagasse biomass in sugarcane plants using Particle Swarm Optimization (PSO) algorithm by data obtained from several case studies which had been simulatedwith SQP (Sequential quadratic programming) algorithm. In these studies, bagasse containing 50% moisture content (MC) alone or with fossil fuels, as well asbagasse with a moisture content of 40% and 30% with fossil fuels wereused. Optimization values showed that 20% decrease in bagasse’s MC caused 55.6% increase in power generation efficiency, 36.3% reduction in gas emissions as well as 100% bagasse saving. PSO showed similar results to SQP and it seems that it is a proper algorithm than SQP. Therefore, if the bagasse is more dried by solar energy to lower MC, the greater efficiency of power generation is obtained.
Keywords: Bagasse, Power Generation, PSO Algorithm, Optimization -
The amount of the active power production by the photovoltaic systems depends on the radiation intensity and temperature. In this concept, the optimal use of photovoltaic systems is considered for controlling the voltage and correcting the power factor over day and night. Using this concept, it is possible to use photovoltaic systems in a more optimal way during the day and night. In this method, the photovoltaic systems capacity is not only used during the night to generate reactive power. Although studies have investigated the optimal locating of the distributed generation, DG is referred to as only the source of active power generation. In this paper, a new method for optimal placement of the photovoltaic systems, by considering their inverter nominal capacity to generate reactive power in addition to the active power in order to improve the voltage profile and reduce the system losses of the micro-grid, was employed. Two 33-bus and 6-bus networks were selected for investigating, and after implementing the method as well as applying the genetic algorithm optimization, it was determined that the optimal location of the photovoltaic systems by taking into account the active and reactive power production.
Keywords: Genetic Algorithm, PSO Algorithm, DG resources, Active power, reactive power -
الگوریتم های فرا ابتکاری الهام گرفته از طبیعت که به تقلید از طبیعت می باشند، یک دوره جدید را در حل مسائل بهینه سازی باز کردند. در این مقاله با استفاده از رفتار یادگیری شرطی سازی کلاسیک پرندگان، ذرات یاد می گیرند یک رفتار طبیعی شرطی را در قبال یک محرک غیرشرطی انجام دهند. ذرات در فضای مسئله به چندین دسته تقسیم خواهند شد و هر ذره اگر تنوع دسته خود را در سطح پایینی دید، سعی خواهد کرد به سمت بهترین تجربه شخصی خود حرکت کند و اگر سطح تنوع دسته بالا بود ذره یاد خواهد گرفت که در این شرایط به سمت بهینه عمومی دسته خود متمایل شود. همچنین با استفاده از ایده حساسیت پرندگان نسبت به فضایی که در آن پرواز می کنند، سعی شده که ذرات در فضاهای نامناسب با سرعت بیشتری به حرکت درآمده تا ذره از آن فضا دور گردد و بالعکس در فضاهای پرارزش سرعت ذرات جهت جستجوی بیشتر، پایین خواهد آمد. در جمعیت دهی اولیه نیز با استفاده از رفتار غریزی پرندگان، یک جمعیت دهی براساس شایستگی ذرات انجام خواهد شد. روش پیشنهادی در نرم افزار متلب پیاده سازی شده و نتایج در چندین بخش با روش های مختلف مشابه مقایسه و نتایج حاکی از آن بوده که روش پیشنهادی یک الگوریتم قابل اتکا در حل مسائل بهینه سازی ایستا می باشد.کلید واژگان: الگوریتم پرندگان، بهینه سازی، هزینه ذرات، معادله سرعت، شرطی سازی کلاسیکNature-inspired algorithms are the imitation of nature opened a new era in calculations for solving optimization problems. In this thesis, we will provide an optimization algorithm inspired by nature using the instinctive behavior of birds. In this thesis, particles learn to have a conditional normal behavior towards an unconditioned stimulus using the classical conditioning learning behavior of birds. Particles will be divided into multiple categories in the problem space. If any particle had a low-level category, it will try to move towards its best personal experience. If any particle had a high-level category, it will learn to move towards the global optimum in its category. Using the idea of birds’ sensitivity towards the environment, in which birds are flying, we tried to move particles in incompetent spaces more quickly so that the particle goes far away from that space, and vice versa, we will bring down the particles’ speed in valuable spaces to search for more. We selected a population based on the particles’ merit in the initial population selection using the instinctive behavior of birds. The proposed method was implemented in MATLAB software, and the results have been compared in several different ways. The results showed that the proposed method is a reliable algorithm to solve the static problems.Keywords: PSO Algorithm, optimization, particles cost, velocity equation, classical conditioning
-
مدیریت ارتباط پروتکل TCP مستعد یک حمله ی کلاسیک می باشد که SYN-flooding نام دارد. در این حمله، مبدا تعداد زیادی از سگمنت های SYN را به طعمه می فرستد بدون اینکه گام سوم از الگوریتم دست تکانی سه مرحله ای را کامل نماید. این امر سبب می شود منابع اختصاص یافته برای برقراری ارتباط در سیستم تحت حمله و پهنای باند شبکه به سرعت مصرف شود و در نتیجه از ادامه ی فعالیت باز بماند و درگیر رسیدگی به تقاضاهای بی مورد شود. این مقاله سیستم تحت حمله را با استفاده از تیوری صف بندی مدل سازی کرده و مساله ی دفاع در برابر حملات SYN-flooding را به یک مساله ی بهینه سازی نگاشت می دهد. سپس با استفاده از ترکیب فیلتر موثر انطباقی و الگوریتم PSO روش پیشنهادی خود را ارایه کرده و به حل این مساله می پردازد. نتایج شبیه سازی نشان می دهد که مکانیزم دفاعی پیشنهادی از نظر میزان درخواست های بلوکه شده، احتمال موفقیت در برقراری ارتباط، احتمال موفقیت حمله کننده و همچنین استفاده ی بهینه از بافر اختصاص داده شده دارای کارایی قابل ملاحظه ای می باشد.
کلید واژگان: حملات SYN-flooding، فیلتر موثر انطباقی، الگوریتم PSO، DoS، TCPTCP connection management is susceptible to a classic attack called SYN-flooding. In this attack, the source sends a large number of SYN segments to the victim system, without completing the third step of the three-step handshaking algorithm. This lead to consuming the resources allocated to communicate with under attack system and bandwidth of the network quickly and, as a result, system cannot continue to work and engage in unnecessary requests. This paper models the attacked system using quadratic theory and maps the problem of defense against SYN-flooding attacks into an optimization problem. Then, using an effective adaptive filter combination with the PSO algorithm, it presents its proposed method and solves this problem. The simulation results show that the proposed defense mechanism has a significant performance in terms of the amount of blocked requests, the likelihood of success in communication, the likelihood of success of the attacker, and the optimal use of the dedicated buffer.
Keywords: SYN Flooding Attacks, Adaptive Effective Filter, PSO Algorithm, DoS, TCP
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.