به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

meta-heuristic algorithms

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه meta-heuristic algorithms در نشریات گروه فنی و مهندسی
  • Ahmad Aliyari Boroujeni, Ameneh Khadivar*

    The Traveling Salesman Problem (TSP) is a well-known problem in optimization and graph theory, where finding the optimal solution has always been of significant interest. Optimal solutions to TSP can help reduce costs and increase efficiency across various fields. Heuristic algorithms are often employed to solve TSP, as they are more efficient than exact methods due to the complexity and large search space of the problem. In this study, meta-heuristic algorithms such as the Genetic Algorithm and the Teaching-Learning Based Optimization (TLBO) algorithm are used to solve the TSP. Additionally, a discrete mutation phase is introduced to the TLBO algorithm to enhance its performance in solving the TSP. The results indicate that, in testing two specific models of the TSP, the modified TLBO algorithm outperforms both the Genetic Algorithm and the standard TLBO algorithm in terms of convergence to the optimal solution and response time.

    Keywords: Traveling Salesman Problem, Modified Teaching-Learning Based, Optimization, Meta-Heuristic Algorithms, Graph Theory
  • جهانبخش محمودزاده، محمدمهدی موحدی*، سید احمد شایان نیا

    پژوهش حاضر به ارائه مدل سه سطحی با اطلاعات ناقص وغیر قطعی زنجیره تامین پرداخته است. اهداف مسئله شامل تعیین بهترین تصمیم هر یک از بازیکنان برای تعیین مقدار سفارش بهینه و کمبود برای تولید کننده و قیمت فروش هر بازیکن با توجه به کمبود، تخفیف و هزینه های نگهداری، خرید و بازاریابی برای دستیابی به حداکثر درآمد، حداقل هزینه ها و در مجموع آن، حداکثر سود ممکن برای کل بازیکنان شرکت کننده در زنجیره است. برای حل مدل از نرم افزار گمز و الگوریتم های فرا ابتکاری استفاده شده است . با توجه به در زمره پیچیدگی سخت بودن مسایل زنجیره تامین حلقه بسته، مسئله پیش رو نیز در زمان معقول برای ابعاد موجود در دنیای واقعی حل شدنی نیست. از این رو، برای حل آن از رویکرد فراابتکاری در قالب الگوریتم های ژنتیک و بهینه سازی ازدحام ذرات و ترکیب این دو الگوریتم استفاده شده است. نتایج نشان می دهد که که الگوریتم ترکیبی ژنتیک و ازدحام ذرات در مقایسه با الگوریتم های ژنتیک و ازدحام ذرات از عملکرد بهتری برخوردار بوده است.

    کلید واژگان: زنجیره تامین، الگوریتم های فرا ابتکاری، الگوریتم ژنتیک، الگوریتم ازدحام ذرات
    Jahanbakhsh Mahmoudzadeh, Mohammadmahdi Movahedi *, Seyed Ahmad Shayannia

    The present study presents a three-tier model with incomplete and uncertain information of supply chain needs, benefits and services. Objectives of the issue include determining the best decision to determine the optimal order amount and shortage for the manufacturer and the selling price of each player according to the shortage, discount and maintenance costs, purchase and marketing to achieve maximum revenue, minimum costs and The sum is the maximum possible profit for all the players participating in the chain. To solve the model, Gamz software and meta-heuristic algorithms have been used and finally, Given the complexity of the complexity of closed-loop supply chain problems, the problem ahead cannot be solved in a reasonable time for real-world dimensions. Therefore, to solve it, the meta-heuristic approach in the form of genetic algorithms and optimization of particle aggregation and the combination of these two algorithms have been used. The results show that the combined algorithm of genetics and particle swarming has a better situation compared to genetic and particle swarming algorithms.

    Keywords: Supply Chain, Meta- Heuristic Algorithms, Genetic Algorithm, Particle Swarm Algorithm
  • Sina Rashvand, Kimars Fathi Hafshjani *, Mohammadali Afshar Kazemi

    This study optimizes the multi-commodity routing problem in a constrained network, integrating dynamic warehouse management, diverse vehicle ownership options, and congestion management. The model addresses the efficient routing of goods with limited vehicle and warehouse capacities, enabling the addition or removal of warehouses based on demand fluctuations. It incorporates a hybrid fleet strategy, balancing owned and outsourced vehicles to minimize costs while ensuring flexibility. The model also considers network congestion, optimizing routes and schedules to mitigate delays. This approach provides a comprehensive solution for cost-effective and responsive supply chain logistics. In this research, the complexity of the mathematical model and its multi-objective nature led to the use of the epsilon constraint method and the MOGWO and NSGA II algorithms in the model. Solving the model using the mentioned methods showed that the total costs increased with the improvement of the second objective function. This problem has been due to the use of vehicles with higher speeds and higher prices, and also by reducing the risk of transporting products, the total costs have increased again.

    Keywords: Location-Routing, Uncertainty, Fuzzy Programming, M, C, K Model, Meta-Heuristic Algorithms
  • Mohsen Amini Khouzani, Alireza Sadeghi *, Amir Daneshvar, Adel Pourghader Chobar

    The problem of allocation of financial resources in projects is one of the most important problems of mathematical optimization. Incorrect allocation of financial resources can lead to project failure, increased costs, and reduced profitability. The importance of this issue has led to the modeling of a financial resource allocation problem for sustainable projects under uncertainty in this article. A fuzzy programming method was used to control model parameters and GSSA, GA, and SSA algorithms were used to solve the model. In the mathematical model, the goal was to optimize the objective function consisting of predicted return, investment risk, and project sustainability. Mathematical calculation results showed that meta-heuristic algorithms have high efficiency in achieving optimal solutions in a short time. so that the average time to solve them was less than 10 seconds. Also, the calculation results showed that increasing the uncertainty rate leads to increasing the value of the objective function and creating a distance from the optimal point. This is due to increasing costs and decreasing profits in sustainable projects. Finally, usage the TOPSIS method, the ranking of solving algorithms was done, and the GSSA algorithm was the most efficient algorithm among other algorithms with a desirability weight of 0.846.

    Keywords: resource allocation, sustainable projects, fuzzy programming, meta-heuristic algorithms
  • Hossein Abdi, Hamed Nozari *
    This paper discusses the modeling of a location-routing-inventory problem for perishable products. The model presented in this paper includes a three-echelon supply chain of suppliers, distribution centers, and retailers. Supplier selection, assigning suppliers to distribution centers and retailers, vehicle routing and economic order quantity, lead time, and confidence inventory are the main decisions of the problem. These decisions are aimed at optimizing the total supply chain network costs. The nonlinear model presented in this article has been solved using two algorithms, WOA and ALO, in 12 sample problems. The results show that the solving speed of these algorithms and the high quality of the obtained answers are very high compared to the exact method. So, the maximum percentage of relative difference between the obtained results is less than 1%. The sensitivity analysis on the perishability rate also shows the increase in total costs in line with the increase in this parameter. By examining the outputs of 12 sample problems in large size, the WOA showed its efficiency compared to the ALO in terms of two indicators of average total costs and CPU time.
    Keywords: Location-Routing-Inventory, Perishable Products, Distribution-Routing Network, Meta-Heuristic Algorithms
  • Maryam Rahmaty *
    In this paper, the modeling of a closed-loop supply chain problem is discussed concerning economic and environmental aspects. The considered supply chain simultaneously makes strategic and tactical decisions, such as locating potential facilities, optimal allocation of product flow, and determining the optimal level of discount. Since the presented model is an NP-Hard model, MOPSO and SPEA II algorithms have been used to solve the problem. For this purpose, a priority-based encoding is presented, and the Pareto front resulting from solving different problems is compared. The results show that the MOPSO algorithm has obtained the most significant number of Pareto solutions in the large size. In contrast, the SPEA algorithm has included more Pareto solutions in the small and medium sizes. This is despite the fact that in different sizes, the MOPSO algorithm has the lowest calculation time among all algorithms. Also, according to the results obtained from the TOPSIS method, it was observed that the MOPSO algorithm in small and medium sizes and the SPEA2 algorithm in larger sizes have better performance than other proposed algorithms.
    Keywords: network design, Closed-loop supply chain, economic, environmental aspects, meta-heuristic algorithms
  • Mona Beiranvand, Sayyed Mohammad Reza Davoodi *

    Today, one of the topics in supply chain management is "multiple sales channels" and "pricing". In this research, a food producer (west Sahar Dasht Company) has been selected, and several retailers and wholesalers have been considered as the company's customers. This research dynamically solves the model through the game theory method. To obtain the equilibrium point and Stockelberg, the lower level optimal values (retailers and suppliers) are calculated based on the higher-level values (manufacturer), which turns the multi-level model into a single-level model to calculate the higher level optimal values. By presenting a case study and analyzing the sensitivity of the parameters, it was shown that some changes in the parameters have a significant effect on the problem variables, and its equilibrium model is better. Because game theory is proposed to solve problems on a small scale, and because the present problem is so complex, genetic algorithm meta-heuristic and particle aggregation optimization have been used to solve medium and large problems. To validate their results, they are compared with the results obtained from the mathematical model. Finally, comparing the performance of the two meta-heuristic algorithms through statistical analysis has shown that the particle aggregation optimization algorithm performs better than the genetic algorithm.

    Keywords: Two-channel supply chain, pricing, money return guarantee policy, game theory, meta-heuristic algorithms
  • منا علیزاده فیروزی، وحید کیانی*، حسین کریمی
    هدف

    هدف این مقاله ارایه یک الگوریتم ژنتیک بهبودیافته برای حل مسئله مکان یابی بدون ظرفیت هاب با تخصیص تکی است. روش های پیشین حل مسئله کمتر به گوناگونی جواب ها در جمعیت توجه داشته اند و به دلیل عدم تنوع کافی در عملگرهای جهش تنها در برخی اجراها عملکرد مطلوبی دارند و در سایر اجراها در بهینه محلی گرفتار می شوند.

    روش شناسی پژوهش

     روش پیشنهادی از عملگرهای ژنتیک مناسب برای افزایش گوناگونی جمعیت و از جستجوی همسایگی محلی در اطراف بهترین جواب برای افزایش سرعت همگرایی استفاده می کند. استفاده از عملگرهای جهش هاب در کنار عملگرهای جهش تخصیص در الگوریتم پیشنهادی باعث کاوش بهتر فضای جستجو، افزایش کارایی و دستیابی به جواب بهینه در اکثر اجراها در مسایل با اندازه بزرگ شد. همچنین، جستجوی همسایگی محلی در اطراف بهترین جواب، باعث همگرایی سریع تر روش پیشنهادی شد و زمان حل مسئله را درمجموع برای مسایل بزرگ کاهش داد.

    یافته ها

     ارزیابی روش پیشنهادی و الگوریتم پایه روی مجموعه داده پست استرالیا (AP) نشان داد که بهبودهای انجام شده ضمن حفظ سرعت اجرا، کارایی الگوریتم ژنتیک را در دستیابی به جواب بهینه برای مسایلی به بزرگی 200 گره از %2 به بیش از %85 افزایش می دهد.

    اصالت/ارزش افزوده علمی

     این مطالعه نشان داد که الگوریتم های فرا ابتکاری و نسخه های بهبودیافته آن ها می توانند روش های مناسبی برای حل انواع مسایل مکان یابی هاب در زمان کوتاه و محدود باشند

    کلید واژگان: الگوریتم ژنتیک، الگوریتم های فرا ابتکاری، جستجوی محلی، مکان یابی هاب
    Mona Alizadeh Firozi, Vahid Kiani *, Hossein Karimi
    Purpose

    The purpose of this paper is to propose an improved genetic algorithm to solve the problem of Uncapacitated Single-allocation Hub Location. Previous methods have paid less attention to the diversity of population, and due to insufficient vairation in mutation operators, they perform well only in a few runs, and in other runs they are caught in the local optimum.

    Methodology

    The proposed method uses appropriate genetic operators to increase diversity of the population and performs local search around the best answer to exploit promising areas of the solution space. The use of hub mutation operators along with allocation mutation operators in the proposed algorithm has increased its exploration ability and effectiveness, which has led to discovery of the optimal answer in most runs for large size problems. Also, searching for the local neighborhood of the best answer made convergence faster and reduced the total running time for large instances.

    Findings

    Evaluation of the proposed method and base algorithm on the Australian Post (AP) dataset showed that the improvements increased efficiency of the genetic algorithm in achieving optimal solutions for problems as large as 200 nodes from 2% to more than 85%.

    Originality/Value

     This study showed that meta-heuristic algorithms and their improved versions are suitable methods for solving hub location problems in a short and limited time.

    Keywords: Genetic Algorithm, meta-heuristic algorithms, Local Search, Hub Location
  • حجت الله رجبی مشتاقی، عباس طلوعی اشلقی*، محمدرضا معتدل
    هدف

     در سال های اخیر، شاهد ظهور و گسترش الگوریتم های فرا ابتکاری و استفاده از آن ها جهت حل مسایل پیچیده، غیرخطی و ابعاد بالا بوده ایم. با توجه به اینکه الگوریتم های فوق برای حل مسایل پیچیده و در حال تغییر دنیای واقعی به کار می روند، دنیای الگوریتم ها و طراحی آن ها به شکل فزاینده ای پویا و رو به رشد بوده است. بنابراین، پیوسته شاهد به وجود آمدن الگوریتم های جدیدی هستیم. هدف از این تحقیق، ارایه یک الگوریتم فرا ابتکاری جدید به نام «الگوریتم بهینه سازی نظامی» می باشد.

    روش شناسی پژوهش

    با الهام از عملیات های نظامی الگوریتم پیشنهادی طراحی و ارایه گردید و پس از کدنویسی، توابع تست استاندارد و الگوریتم های محک برای ارزیابی عملکرد آن تعیین و مشخص شدند.

    یافته ها

      عملکرد الگوریتم پیشنهادی به وسیله 23 تابع تست استاندارد و با در نظر گرفتن شاخص های «میانگین جواب ها»، «میانگین زمان محاسباتی» و «زمان همگرایی» در مقایسه با هشت الگوریتم محک شامل: ژنتیک، ازدحام ذرات، کلونی زنبور مصنوعی، قورباغه جهنده، رقابت استعماری، گرگ خاکستری، بهینه سازی وال و بهینه سازی ملخ مورد ارزیابی و سنجش قرار گرفت. نتایج نشان دهنده عملکرد مطلوب الگوریتم پیشنهادی است.

    اصالت/ارزش افزوده علمی

       در این مقاله، با الهام از عملیات های نظامی الگوریتم جدیدی به نام الگوریتم بهینه سازی نظامی (MOA) ارایه می شود که مبتنی بر جمعیت است و بر اساس «جستجوی تصادفی»، «تقسیم فضای جواب به چند منطقه و تخصیص بخشی از جمعیت به هر منطقه»، «جستجوی سواره نظام» و «جستجوی پیاده نظام» عمل می کند.

    کلید واژگان: بهینه سازی، الگوریتم های فراابتکاری، الگوریتم بهینه سازی نظامی، الگوریتم های تکاملی، الگوریتم های ازدحامی
    Hojatollah Rajabi Moshtaghi, Abbass Toloie-Eshlaghy *, Mohammad Reza Motadel
    Purpose

    In recent years, meta-heuristic algorithms and their application in solving complicated, nonlinear, and high dimensions problems have increased dramatically and the fact that meta-heuristic algorithms are used to solve complex and changing problems of real life, has caused the algorithms world and their design to be very dynamic and alive; that's why new algorithms are constantly being created. Hence, the purpose of this research is to introduce a novel meta-heuristic algorithm called Military Optimization Algorithm (MOA). 

    Methodology

    Inspired by military operations, the proposed algorithm was designed and presented. After coding, Standard test functions and benchmark algorithms were determined to evaluate the performance of the algorithm.

    Findings

    The performance of new algorithm is analyzed by 23 standard test functions and compared to 8 benchmark meta-heuristic algorithms including: Genetic Algorithm, Particle Swarm Optimization, Artificial Bee Colony, Shuffled Frog Leaping Algorithm, and Imperialist Competitive Algorithm, Grey Wolf Optimizer, Whale Optimization Algorithm, and Grasshopper Optimization Algorithm, by considering three indices of "average answers", "time complexity of algorithm (speed)" and "Convergence speed/ time".  The results show the excellent performance of the proposed algorithm.

    Originality/Value

    In this paper, inspired by military operations, a novel meta-heuristic algorithm called MOA is introduced. It is population-based and stable with "random search", "dividing solution space into several regions and allocating a part of the population to each region", "cavalry search", and "infantry search".

    Keywords: optimization, meta-heuristic algorithms, Military Optimization Algorithm, evolutionary algorithms, Swarm Algorithms
  • MohamadEbrahim Tayebi Araghi, Fariborz Jolai *, Reza Tavakkoli Moghaddam, Mohammad Molana

    The Location Routing Problem (LRP), Automatic Guided Vehicle (AGV), and Uncertainty Planner Facility (UPF) in Facility Location Problems (FLP) have been critical. This research proposed the role of LRP in Intelligence AGV Location–Routing Problem (IALRP) and energy-consuming impact in CMS. The goal of problem minimization dispatching opening cost and the cost of AGV trucking. We set up multi-objective programming. To solve the model, we utilized and investigate the Imperialist Competitor Algorithm (ICA) with Variable Neighborhood Search (VNS). It is shown that the ICAVNS algorithm is high quality effects for the integrated LRP in AGVs and comparison, with the last researches, the sensitivity analysis, and numerical examples imply the validity and good convexity of the purposed model according to the cost minimization.

    Keywords: location-routing, Automatic guided vehicle, Stochastic programming, Uncertainty, meta-heuristic algorithms
  • Iman Seyedi *, Maryam Hamedi, Reza Tavakkoli Moghadaam

    This paper deals with optimizing the multi-door cross-docking scheduling problem for incoming and outgoing trucks. Contrary to previous studies, it first considers the simultaneous effects of learning and deteriorating on loading and unloading the jobs. A mixed-integer linear programming (MILP) model is developed for this problem, in which the basic truck scheduling problem in a cross-docking system is strongly considered as NP-hardness. Thus, in this paper, meta-heuristic algorithms namely genetic algorithm, imperialist competitive algorithm, and a new hybrid meta-heuristic algorithm, resulted from the principal component analysis (PCA) and an imperialist competitive algorithm (ICA) called PCICA are proposed and used. Finally, the numerical results obtained from meta-heuristic algorithms are examined using the relative percentage deviation and time criteria. Results show that the hybrid PCICA algorithm performs better than the other algorithms in terms of the solution quality. Computational results indicate when the learning rate increases, its decreasing effect on processing time will growth and the objective function value is improved. Finally, the sensitivity analysis also indicates when the deterioration rate is reduced, its incremental effect is decreased over time.

    Keywords: cross-dock scheduling, Learning Effect, Deterioration, meta-heuristic algorithms
  • Hojatollah Rajabi Moshtaghi, Abbas Toloie Eshlaghy *, Mohammad Reza Motadel
    Conventional and classical optimization methods are not efficient enough to deal with complicated, NP-hard, high-dimensional, non-linear, and hybrid problems. In recent years, the application of meta-heuristic algorithms for such problems increased dramatically and it is widely used in various fields. These algorithms, in contrast to exact optimization methods, find the solutions which are very close to the global optimum solution as possible, in such a way that this solution satisfies the threshold constraint with an acceptable level. Most of the meta-heuristic algorithms are inspired by natural phenomena. In this research, a comprehensive review on meta-heuristic algorithms is presented to introduce a large number of them (i.e. about 110 algorithms). Moreover, this research provides a brief explanation along with the source of their inspiration for each algorithm. Also, these algorithms are categorized based on the type of algorithms (e.g. swarm-based, evolutionary, physics-based, and human-based), nature-inspired vs non-nature-inspired based, population-based vs single-solution based. Finally, we present a novel classification of meta-heuristic algorithms based on the country of origin.
    Keywords: meta-heuristic algorithms, Meta-heuristic Optimization, Classification of Meta-Heuristic Algorithms, evolutionary algorithms, Swarm Algorithms
  • محمدرضا جعفری*
    در این تحقیق مسئله مکان یابی و مسیریابی باز در زنجیره تامین چهار سطحی شامل تامین کنندگان، تولیدکنندگان، مراکز توزیع و خرده فروشان به عنوان یک مدل ریاضی چندهدفه با در نظر گرفتن عوامل توسعه پایدار ارایه شده است. حمل ونقل مواد بین تمام سطوح به صورت مستقیم بوده و بین مراکز توزیع و مشتریان و همچنین تولیدکنندگان با مشتریان مسیریابی انجام می شود. جریان مواد خام بین تامین کنندگان و تولیدکنندگان بر اساس مشخصات فنی محصولات نهایی خواهد بود. به عبارت دیگر، برای هر محصول نهایی، ترکیب موردنیاز از مواد خام به عنوان پارامتر ورودی مشخص شده و بر اساس آن میزان موردنیاز از مواد خام برای تولید هر محصول تعیین می گردد. در بسیاری از تحقیقات، فرض بر این است که وسایل حمل ونقل متعلق به خود سازمان بوده و پس از ارایه خدمت باید به مرکز توزیع بازگردند. در مراکز توزیع نیز به منظور ایجاد انعطاف پذیری در تامین تقاضای مشتریان، سطوح مختلف ظرفیتی در نظر گرفته شده که استفاده از هر سطح ظرفیتی دارای میزان هزینه، اثرات زیست محیطی و اثرات اجتماعی متفاوتی است جهت حل مدل ریاضی از روش محدودیت اپسیلون در ابعاد کوچک؛ و الگوریتم های فرا ابتکاری NSGAII، PESAII و MOGWO در حل مسایل با ابعاد بزرگ استفاده شده است.
    کلید واژگان: زنجیره تامین ساخت و ساز پایدار، بهینه سازی چندهدفه، ارسال مستقیم، الگوریتم های فرا ابتکاری
    Mohammadreza Jafari *
    In this research, the issue of open location and routing in the four-tier supply chain, including suppliers, manufacturers, distribution centers and retailers, is addressed using a multi-objective mathematical model and taking into account the factors of sustainable development. Material transportation between all levels is direct and is routed between distribution centers and customers as well as manufacturers with customers. The flow of raw materials between suppliers and producers will be based on the technical specifications of the final products. In other words, for each final product, the required composition of raw materials is determined as the input parameter and based on that, the required amount of raw materials for the production of each product is estimated. In many studies, it is assumed that the vehicles are assets to the organization and must return to the distribution center after providing the service. In distribution centers, in order to create flexibility in meeting customer demand, different capacity levels are considered, with the employment of each capacity level having different environmental and social effects and are solved using the mathematical model of the Epsilon constraint method in small dimensions. NSGAII, PESAII and MOGWO meta-heuristic algorithms have been used to solve large-scale problems.
    Keywords: Sustainable construction supply chain, Multi-Objective Optimization, Direct delivery, Meta-Heuristic Algorithms
  • Surur Yaghobi Harzandi, AmirAbbas Najafi *

    The problem of maximizing the benefit from a specified number of a particular product with respect to the behavior of customer choices is regarded as revenue management. This managerial technique was first adopted by the airline industries before being widely used by many others such as hotel industries. The scope of this research is mainly focused on hotel revenue management, regarding which a bi-objective model is proposed. The suggested method aims at increasing the revenue of hotels by assigning the same rooms to different customers. Maximization of hotel revenue is a network management problem aiming to manage several resources simultaneously. Accordingly, a model is proposed in this paper based on the customer choice behavior in which the customers are divided into two groups of business and leisure. Customers of the business group prefer products with full price, whereas products with discounts are most desirable for leisure customers. The model consists of two objectives, the first one of which maximizes the means of revenue, and the second one minimizes the dispersion of revenue. Since the problem under consideration is Non-deterministic Polynomial-time hard (NP-hard), two meta-heuristic algorithms of Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Multiple Objective Particle Swarm Optimization (MOPSO) are proposed to solve the problem. Moreover, the tuned algorithms are compared via the statistical analysis method. The results show that the NSGA-II is more efficient in comparison with MOPSO.

    Keywords: Hotel Revenue management, Bi-objective model, Meta-Heuristic Algorithms, Customer choices
  • Javid Ghahremani Nahr, Hamed Nozari *, Seyyed Esmaeil Najafi

    The mathematical model of a multi-product multi-period multi-echelon closed-loop supply chain network design under uncertainty is designed in this paper. The designed network consists of raw material suppliers, plants, warehouses, distribution centers, and customer zones in forward chain and collection centers, repair centers, recovery/decomposition center, and disposal center in the reverse chain. The goal of the model is to determine the quantities of products and raw material transported between the supply chain entities in each period by considering different transportation mode, the number and locations of the potential facilities, the shortage of products in each period, and the inventory of products in warehouses and plants with considering discount and uncertainty parameters. The robust possibilistic optimization approach was used to control the uncertainty parameter. At the end to solve the proposed model, five meta-heuristic algorithms include genetic algorithm, bee colony algorithm, simulated annealing, imperial competitive algorithm, and particle swarm optimization are utilized. Finally, some numerical illustrations are provided to compare the proposed algorithms. The results show the genetic algorithm is an efficient algorithm for solving the designed model in this paper.

    Keywords: Green Closed-loop Supply Chain, Discount, meta-heuristic algorithms, Robust Possibilistic Optimization Approach, Uncertainty
  • الهام فاضلی ویسری، محمدجواد تقی پوریان*، رضا طاولی، قیدر قنبرزاده

    هدف پژوهش حاضر شناسایی مولفه ها و توسعه یک الگو جهت ارایه قوانین بهینه بازاریابی ویروسی در کسب و کارهای آنلاین می باشد. یک پژوهش کاربردی و از نظر روش، آمیخته (کمی و کیفی) می باشد. جامعه آماری پژوهش در بخش کیفی شامل 15 نفر در نسلهای سه گانه X، Y و Z (نسل بازاریابی ملینیوم) و در بخش کمی شامل 460 نفر از خریداران آنلاین می باشد. ابزار گردآوری  داده ها در بخش کیفی تکنیک فرافکنی می باشد و از مصاحبه عمیق استفاده شده است. با استفاده از نرم افزار MAXQDA مصاحبه ها تحلیل و جمع بندی شده که از این طریق شش مولفه شناسایی گردید و سپس در بخش کمی از 12 خبره برای تعیین شاخص لاوشه استفاده شد و در ادامه تحلیل عاملی اکتشافی به وسیله نرم افزار SPSS انجام گرفت. از آن جا که انتخاب موثرترین مولفه های جدید بازاریابی ویروسی می تواند تاثیر زیادی در دقت مدل بازاریابی ویروسی در کسب وکارهای آنلاین داشته باشد، جهت شناسایی تاثیرگذارترین مولفه ها از الگوریتم فراابتکاری ژنتیک استفاده شد که نرم افزارهای به کارگرفته شده در این بخش WEKAو RAPIDMINERمی باشد. در نهایت با استفاده از روش درخت تصمیم قوانین بهینه سازی بازاریابی ویروسی شناسایی گردید. یافته ها ابتدا در بخش کیفی حاکی از آن است که ترغیب آنلاین، اعتماد آنلاین، پشتیبانی آنلاین، خدمات آنلاین، جذابیت آنلاین و ریسک پذیری آنلاین بعنوان مولفه های بازاریابی ویروسی می باشند. در ادامه در بخش کمی و الگوریتم ژنتیک نشان داد که مولفه ی ریسک پذیری آنلاین نمی تواند به عنوان مولفه اثرگذار جهت مدل سازی و استخراج قوانین بازاریابی ویروسی به کار گرفته شود، بنابراین از میان شش مولفه حذف گردید

    کلید واژگان: بازاریابی ویروسی، کسب و کارهای آنلاین، بهینه سازی، الگوریتم فراابتکاری، درخت تصمیم
    Elham Fazelli Veisari, MohamadJavad Taghipourian *, Reza Tavoli, Ghydar Ghanbarzade

    The purpose of this study is to identify the components and develop a model to provide rules for optimizing viral marketing in businesses. It is an applied research and in terms of method, it is mixed (quantitative and qualitative). The statistical population of the research in the qualitative part includes 15 people in the three generations X, Y and Z (Millennium marketing generation) and in the quantitative part includes 460 online buyers. Data collection tools were used in the qualitative part of projection technique and in-depth interview. Interviews were analyzed and summarized using MAXQDA software, through which six components were identified, and then in a small part of 12 experts were used to determine the index of CVR, and then exploratory factor analysis was performed by SPSS software. Because selecting the most effective new components of viral marketing can have a huge impact on the accuracy of the viral marketing model in online businesses, To identify the most effective components, genetic metaheuristic algorithm was used, which is the software used in this section, WEKA and RAPIDMINER. Finally, the rules of viral marketing optimization were identified using the decision tree method. Findings in the qualitative section indicate that online persuasion, online trust, online support, online services, online attractiveness and online risk-taking are components of viral marketing. In the quantitative section and genetic algorithm, it was shown that the online risk component could not be used as an effective component for modeling and extracting viral marketing rules, so it was removed from the six components.

    Keywords: Viral Marketing, online businesses, optimization, meta-heuristic algorithms, decision trees
  • Zahra Rajabi, Soroush Avakh Darestani *
    The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third level. In this research, a novel multi-product multi-objective model for capacitated hierarchical hub location problem with maximal covering under fuzzy condition first is suggested. Cost, time, hub and central hub capacities are considered as fuzzy parameters, whereas manyparameters are uncertainty and indeterministic in the real world. To solve the proposed fuzzy possibilistic multi-objective model, first, the model is converted to the equivalent auxiliary crisp model by hybrid method and then is solved by two meta-heuristic algorithms such as Non-Dominated Sorting Genetic Algorithm (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA) using MATLAB software The statistical results report that there is no significant difference between means of two algorithms exception CPU time criteria. In general, in order to show efficiency of two algorithms, we used Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), the resultsclearly show that the efficiency of NRGA is better than NSGA-II and finally, figures are achieved  by MATLAB software that analyze the conflicting between two objectives.
    Keywords: The hierarchical, Hub covering location, Fuzzy possibilistic multi-objective, Multi-product, Meta heuristic algorithms
  • Mojtaba Salehi *, Hamid Tikani
    This paper introduces a two stage stochastic programming to address strategic hub location decisions and tactical flight routes decisions for various customer classes considering uncertainty in demands. We considered the airline network with the arc capacitated single hub location problem based on complete–star p-hub network. In fact, the flight routes are allowed to stop at most two different hubs. The first stage of the model (strategic level) determines the network configuration, which does not change in a short space of time. The second stage is dedicated to specify a service network consists of determining the flight routes and providing booking limits for all itineraries and fare classes after realization of uncertain scenarios. To deal with the demands uncertainty, a stochastic variations caused by seasonally passengers’ demands through a number of scenarios is considered. Since airline transportation networks may face different disruptions in both airport hubs and communication links (for example due to the severe weather), proposed model controls the minimum reliability for the network structure. Due to the computational complexity of the resulted model, a hybrid algorithm improved by a caching technique based on genetic operators is provided to find a near optimal solution for the problem. Numerical experiments are carried out on the Turkish network data set. The performance of the solutions obtained by the proposed algorithm is compared with the pure GA and Particle Swarm Optimization (PSO) in terms of the computational time requirements and solution quality.
    Keywords: Customer segmentation, scenario generation method, Network Reliability, Stochastic programming, meta-heuristic algorithms
  • Mostafa Zaree, Reza Kamranrad *, Mojtaba Zaree, Iman Emami

    Today's competitive conditions have caused the projects to be carried out in the least possible time with limited resources .Therefore, managing and scheduling a project is a necessity for the project.The timing of a project is to specify a sequence of times for a series of related activities.According to their priority and their latency, so that between the time the project is completed and the total cost is balanced.Given the balance between time and cost, and to achieve these goals, there are several options that should be considered among existing options and ultimately the best option to perform activities to complete the project.In this research, a mathematical model of project scheduling with multiple goals based on cost patterns and consideration of resource constraints is presented, and this problem is considered as a problem for NP-hard issues in family hybrid optimization. GA,PSO and SA Meta-heuristic algorithmsareused to solve the proposed model in project scheduling and the results are compared with each other.

    Keywords: Project scheduling, NPV maximizing, payment patterns, Resource constraints, meta-heuristic algorithms
  • Amir Mohammad Golmohammadi, Mahboobeh Honarvar*, Guangdong Guangdong, Hasan Hosseini Nasab

    There is still a great deal of attention in cellular manufacturing systems and proposing capable metaheuristics to better solve these complicated optimization models. In this study, machines are considered unreliable that life span of them follows a Weibull distribution. The intra and inter-cell movements for both parts and machines are determined using batch sizes for transferring parts are related to the distance traveled through a rectilinear distance. The objectives minimize the total cost of parts relocations and maximize the processing routes reliability due to alternative process routing. To solve the proposed problem, Genetic Algorithm (GA) and two recent nature-inspired algorithms including Keshtel Algorithm (KA) and Red Deer Algorithm (RDA) are employed. In addition, the main innovation of this paper is to propose a novel hybrid metaheuristic algorithm based on the benefits of aforementioned algorithms. Some numerical instances are defined and solved by the proposed algorithms and also validated by the outputs of exact solver. A real case study is also utilized to validate the proposed solution and modeling algorithms. The results indicate that the proposed hybrid algorithm is more appropriate than the exact solver and outperforms the performance of individual ones.

    Keywords: Cell formation, Cellular manufacturing system, Machine reliability, Cell layout, Weibull distribution, Meta-heuristic algorithms
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال