genetic algorithm
در نشریات گروه مهندسی معدن-
The large-scale open-pit mine production planning problem is an NP-hard issue. That is, it cannot be solved in a reasonable computational time. To solve this problem, various methods, including metaheuristic methods, have been proposed to reduce the computation time. One of these methods is the genetic algorithm (GA) which can provide near-optimal solutions to the problem in a shorter time. This paper aims to evaluate the efficiency of the GA technique based on the pit values and computational times compared with other methods of designing the ultimate pit limit (UPL). In other words, in addition to GA evaluation in UPL design, other proposed methods for UPL design are also compared. Determining the UPL of an open-pit mine is the first step in production planning. UPL solver selects blocks whose total economic value is maximum while meeting the slope constraints. In this regard, various methods have been proposed, which can be classified into three general categories: Operational Research (OR), heuristic, and metaheuristic. The GA, categorized as a metaheuristic method, Linear Programming (LP) model as an OR method, and Floating Cone (FC) algorithm as a heuristic method, have been employed to determine the UPL of open-pit mines. Since the LP method provides the exact answer, consider the basics. Then the results of GA were validated based on the results of LP and compared with the results of FC. This paper used the Marvin mine block model with characteristics of 53271 blocks and eight levels as a case study. Comparing the UPL value's three ways revealed that the LP model received the highest value by comparing the value obtained from GA and the FC algorithm's lowest value. However, the GA provided the results in a shorter time than LP, which is more critical in large-scale production planning problems. By performing the sensitivity analysis in the GA on the two parameters, crossover and mutation probability, the GA's UPL value was modified to 20940. Its UPL value is only 8% less than LP's UPL value.Keywords: Floating Cone algorithm, Genetic Algorithm, Linear Programming model, Sensitivity analysis, Ultimate pit limit
-
Surface settlement induced by tunneling is one of the most crucial problems in urban environments. Hence, accurate prediction of soil geotechnical properties is an important prerequisite in the minimization of it. In this research work, the amount of surface settlement is predicted using three-dimensional numerical simulation in the finite difference method and Artificial Neural Network (ANN). In order to determine the real geotechnical properties of soil layers around the tunnel; back-analysis is carried out using the optimization algorithm and monitoring data. Among the different optimization methods, genetic algorithm (GA) and particle swarm optimization (PSO) are selected, and their performance is compared. The results obtained show that the artificial neural network has a high ability with the amounts of R=0.99, RMSE=0.0117, and MSE= 0.000138 in predicting the surface settlement obtained from 150 simulations from randomly generated data. Comparing the results of back-analysis using the optimization algorithm, the genetic algorithm shows less error than the particle swarm algorithm in different initial populations. In all cases of analysis, the calculation time for both algorithms lasts about 5 minutes, which indicates the applicability of both algorithms in optimizing the parameters in mechanized tunneling in a short time.
Keywords: Back analysis, Flac3D, Artificial Neural Network, Genetic Algorithm, Particle Swarm Optimization -
برای بالا بردن میزان تولید و ایجاد تولید پیوسته در کارگاه های استخراج معدنکاری زغال سنگ، در کنار سایر تجهیزات مورد استفاده، به کار بردن ماشین های زغال کن شیرر لودر بسیار مفید است. از این رو پیش بینی و تعیین سرعت مناسب این دستگاه ها کمک زیادی به زمان اجرای پروژه ها و اقتصاد طرح ها می کند. برای تعیین سرعت مناسب استخراج شیرر لودر، تعداد 1260 نوع برش زغال سنگ به وسیله شیرر، در کارگاه استخراج E3 معدن زغال سنگ مکانیزه طبس بررسی شد. ابتدا پس از برداشت و ثبت سرعت شیرر در هر برش، اطلاعات مربوط به گازخیزی در سه نقطه از طول کارگاه، شامل گاز متان منتشر شده بر حسب درصد بر روی سنسور 88 و سنسور ورودی تونل (TG) و سنسور تعبیه شده بر روی دستگاه ناو زنجیری (AFC)، و سپس مطالعات آماری، پیش بینی سرعت شیرر با سه مدل رگرسیون چند متغیره خطی و غیرخطی (نمایی و لگاریتمی) انجام پذیرفت. نتایج نشان می دهد، مدل رگرسیون چند متغیره خطی ضریب تعیین R2=0.90 پیش بینی دقیق تری نسبت به دو روش دیگر دارد. با استفاده از مدل رگرسیون چند متغیره خطی می توان مقدار سرعت شیرر را با دقت خوبی پیش بینی کرد. برای تعیین سرعت مناسب دستگاه شیرر لودر از الگوریتم ژنتیک در نرم افزار متلب استفاده شد. نتایج نشان می دهد نمودارهای متقاطع بر اساس ضریب تعیین (R2)، با توجه به معادلات (لگاریتمی، نمایی و خطی)، نوع خطی، ضریب تعیین بالاتری نسبت به سایر معادلات دارد، بنابراین بهترین مدل برای تعیین سرعت مناسب انتخاب شد. با استفاده از معادله خطی در الگوریتم ژنتیک، سرعت مناسب استخراج دستگاه شیرر لودر برابر با 79/4 متر بر دقیقه برآورد شد.
کلید واژگان: سرعت مناسب استخراج، شیرر لودر، تحلیل های آماری، الگوریتم ژنتیک، معدن شماره یک پروده طبسTo increase and Join production in coal mining panels, predicting and determining the appropriate speed of these devices can greatly help the project implementation time and economics of designs. For this purpose, 1260 types of coal, cut by the coal mining machine were carried out in the E3 extraction panel of the Tabas mechanized mine. First, after recording the shearer speed of each cut, the information about gas flow was collected at three points along the total length of the panel. These three points include emitted methane gases as a percentage on sensor 88, the tailgate input sensor (TG), and the sensor embedded on the Armored face conveyor (AFC). Shearer speed was predicted with three models of linear and nonlinear multivariate regression (exponential and logarithmic). The results show that the multivariate linear regression model with a coefficient of determination R2=0.90 has a more accurate prediction than the other two methods using the linear multivariate regression model, the amount of shearer speed can be predicted with good accuracy. For this purpose, the genetic algorithm in MATLAB software has been used to optimize the speed of the shearer device. Determining the appropriate speed results show that cross diagrams based on coefficient of determination (R2), according to Equations (logarithmic, exponential and linear), linear type has a higher coefficient of determination than other equations. Therefore, the best model is selected to determine the appropriate speed. Using the linear equation in the genetic algorithm, the extraction speed of the shearer machine was estimated to be 4.79 m/min.
Keywords: Determining the appropriate speed, shearer, Statistical analysis, Genetic algorithm, Tabas mechanized mine -
بعلت تخمین دقیق زمان حفاری و برآورد هزینه های اجرایی، پیش بینی نرخ نفوذ در حفاری مکانیزه حایز اهمیت است. از طرفی به دلیل قیمت بالای ماشین حفاری تمام مقطع (TBM)، ارزیابی عملکرد در حفاری با استفاده از این ماشین بسیار اهمیت دارد. یکی از شاخص های ارزیابی عملکرد ماشین TBM، پیش بینی نرخ نفوذ این دستگاه می باشد. طی سالیان اخیر توسط محققین روش ها و روابط متنوعی برای پیش بینی نرخ نفوذ پیشنهاد شده که هر کدام ویژگی های خاص خود را داشته و براساس پارامترهای مربوط به توده سنگ و مشخصات ماشین ارایه شده اند. هدف از نگارش این مقاله توسعه مدل های دقیق پیش بینی برای تخمین نرخ نفوذ TBM با استفاده از الگوریتم های فراابتکاری نظیر الگوریتم ژنتیک، الگوریتم سیستم ایمنی مصنوعی، الگوریتم پژواک صدای دلفین و الگوریتم گرگ خاکستری است. برای ساخت مدل های پیش بینی از 153 داده که شامل: مقاومت فشاری تک محوره سنگ بکر (UCS)، تردی سنگ بکر(BI)، زاویه بین صفحات ناپیوستگی و جهت حفاری TBM (α) و فاصله بین صفحات ناپیوستگی (DPW) به عنوان پارامترهای ورودی استفاده شده است. همچنین برای ارزیابی مدل ها از شاخص های آماری نظیر میانگین خطای مربعات (MSE) و ضریب همبستگی مربع (R2) استفاده شده است. نتایج مدلسازی ها نشان می دهد الگوریتم ژنتیک با مقادیر012/0=MSETrain، 02/0=MSETest ، 9319/0=R2Train و 8473/0=R2Test از دقت قابل قبولی در پیش بینی نرخ نفوذ TBM (نسبت به سایر الگوریتم ها) برخوردار است.
کلید واژگان: نرخ نفوذ TBM، الگوریتم ژنتیک، الگوریتم سیستم ایمنی مصنوعی، الگوریتم پژواک صدای دلفین، الگوریتم گرگ خاکستریOne of the indicators for evaluating the performance of a tunnel drilling machine is predicting the penetration rate of this machine. There are various methods and relationships for predicting the penetration rate, each of which has its own characteristics and are presented based on the parameters related to the rock mass and the characteristics of the machine. In this study, genetic, artificial immune system, dolphin echolocation and grey wolf algorithms were used to predict the penetration rate of TBM. In this regard, the database consists of 153 data (122 data for train and 31 data for test) including parameters of intact rock such as strength and brittleness and rock mass characteristics such as distance between planes of weakness and orientation of discontinuities along with TBM machine performance in Queens tunnel has been collected. Mean square error (MSE) and square correlation coefficient (R2) have been used to estimate the error rate between the developed methods. Considering the key parameters of rock mass and intact rock and TBM, relationships to predict the penetration rate are presented and based on statistical analysis, the best relationship is selected. The results are compared with the real data and the results of other models show that the values penetration rate predicted by the genetic algorithm with MSETrain=0.012, MSETest=0.02, R2Train=0.9319 and R2Test=0.8473,has acceptable accuracy compared to other methods.
Keywords: Penetration rate of TBM, Genetic Algorithm, Artificial immune system algorithm, Dolphin echolocation algorithm, Grey Wolf Algorithm -
The surface settlement is an essential parameter in the operation of mechanized tunneling that should be determined before excavation. The surface settlement analysis caused by mechanized tunneling is a geo-technical problem characterized by various sources of uncertainty. Unlike the deterministic methods, the reliability analysis can take into account the uncertainties for the surface settlement assessment. In this work, the reliability analysis methods (second-order reliability method (SORM), Monte Carlo simulation (MCS), and first-order reliability method (FORM)) based on the genetic algorithm (GA) are utilized to build models for the reliability analysis of the surface settlement. Specifically, for large-scale projects, the limit state function (LSF) is non-linear and hard to apply based on the reliability methods. In order to resolve this problem, the GMDH (group method of data handling) neural network can estimate LSF without the need for additional assumptions about the function form. In this work, the GMDH neural network is adapted to obtain LSF. In the GMDH neural network, the tail void grouting pressure, groundwater level from tunnel invert, depth, average penetrate rate, distance from shaft, pitching angle, average face pressure, and percent tail void grout filling are used as the input parameters. At the same time, the surface settlement is the output parameter. The field data from the Bangkok subway is used in order to illustrate the capabilities of the proposed reliability methods.
Keywords: Surface settlement, Mechanized tunneling, Reliability methods, GMDH neural network, Genetic Algorithm -
Bedrock unconfined compressive strength (UCS) is a key parameter in designing thegeosciences and building related projects comprising both the underground and surface rock structures. Determination of rock UCS using standard laboratory tests is a complicated, expensive, and time-consuming process, which requires fresh core specimens. However, preparing fresh cores is not always possible, especially during the drilling operation in cracked, fractured, and weak rocks. Therefore, some attempts have recently been made to develop the indirect methods, i.e. intelligent predictive models for rock UCS estimation, which require no core preparation and laboratory equipment. This work focuses on the application of new combinations of intelligent techniques including adoptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA), and particle swarm optimization (PSO) in order to predict rock UCS. These models were constructed based on the collected laboratory datasets upon 93 core specimens ranging from weak to very strong rock types. The proposed hybrid model results were compared with each other, and the real data and multiple regression (MR) results. These comparisons were made using coefficient of correlation, mean of square error, mean of absolute error, and variance account for indices. The comparison results proved that the ANFIS-GA combination had a relatively higher accuracy than the ANFIS-PSO combination, and both had a higher capability than the MR model. Furthermore, the ANFIS-GA and ANFIS-PSO model results were completely in accordance with the UCS laboratory test, and they were more accurate than the previous single/hybrid intelligent models. Lastly, a parametric study of the suggested models showed that the density and Schmidt hammer rebound had the highest influence, and porosity had the lowest influence on the output (UCS).
Keywords: Intact rock, Unconfined compressive strength, Adaptive Neuro-Fuzzy Inference System, Genetic Algorithm, Particle Swarm Optimization -
Truck-Shovel fleet, as the most common transportation system in open-pit mines, has a significant part of mining costs, for which optimal management can lead to substantial cost reductions. Among the available dispatch mathematical models, the multi-stage approach is well suited for allocating trucks to respected shovels in a dynamic dispatching program. However, with this kind of modeling sequencing of the allocated trucks is not possible though it is important to find out the best solution so that getting the minimum accrued cost. To comply with the shortcoming of the traditional model, in this paper, a new hybrid model is developed and applied in Copper Mine of Iran, in which for each truck an allocation matrix is considered as input to the genetic algorithm implemented to determine the best solution. According to the obtained results, the optimal sequencing of the trucks can result in a significant (31%) cost reduction in a shift.
Keywords: Dispatch, Dynamic allocation, Simulation, Genetic Algorithm -
لرزش زمین یکی از آثار ناخوشایند حاصل از عملیات آتشباری در معادن روباز است که در حدود 40 درصد انرژی انفجار را به خود اختصاص می دهد. لرزش زمین ممکن است منجر به بروز آثار نامطلوبی مانند تخریب سازه های سطحی، از بین رفتن سطح آزاد در پله های بعدی انفجار به دلیل عقب زدگی، به هدر رفتن انرژی و ایجاد قطعات بزرگ بعد از انفجار و در نهایت تحمیل هزینه های پیش بینی نشده برای انجام آتشباری ثانویه شود. طراحی بهینه الگوی انفجار می تواند در کاهش اثرات نامطلوب حاصل از این پدیده نقش بسزایی ایفا کند. با توجه به تعدد پارامترهای تاثیرگذار بر لرزش زمین و پیچیدگی روابط میان آن ها، روش های کلاسیک طراحی الگوی انفجار در کاهش این پدیده ناتوان اند. بر این اساس در تحقیق حاضر، با استفاده از یک روش تلفیقی از آنالیز خاکستری و الگوریتم ژنتیک، ضمن ارایه یک رابطه ریاضیاتی برای تخمین لرزش زمین در معدن مس سرچشمه، الگوی پیشنهادی حفاری نیز ارایه شده است. نتایج حاصل از این مقاله نشان می دهد که با به کارگیری الگوی پیشنهادی انفجار، لرزش زمین به طور میانگین تا 55 درصد کاهش خواهد یافت.کلید واژگان: لرزش زمین، آنالیز خاکستری، الگوریتم ژنتیک، عملیات آتشباریGround vibration is one of the most unfavorable consequences of the blasting operation in open pit mines, which assign about 40 percent of explosive energy. Ground vibration may cause some unsuitable effects such as destroying the surface structures, damaging the free face and generate back breaks, generating the over-size boulders and imposing additional costs to the mine because of the secondary blasting. Optimum blasting pattern design can help to reduce the above mentioned problems. Due to multiplicity of effective parameters and complexity of interactions among these parameters, empirical methods may not be fully appropriate for blasting pattern design. In this paper, using a combination of the Grey analysis and Genetic algorithm, addition to developing a new equation for estimating the ground vibration in Sarcheshmeh Copper Mine, blasting pattern is presented. The results show that with applying the proposed blasting pattern the average ground vibration will be decreased about 55 percent.Keywords: Ground vibration, Grey analysis, Genetic algorithm, Blasting
-
Predicting the wear performance of circular diamond saw in the process of sawing hard dimensional stone is an important step in reducing production costs in the stone sawing industry. In the present research work, the effective parameters on circular diamond saw wear are defined, and then the weight of each parameter is determined through adopting a fuzzy rock engineering system (Fuzzy RES) based on defining an accurate Gaussian pattern in fuzzy logic with analogous weighting. After this step, genetic algorithm (GA) is used to determine the levels of the four major variables and the amounts of the saw wear (output parameter) in the classification operation based on the fixed, dissimilar, and logarithmic spanning methods. Finally, a mathematical relationship is suggested for evaluation of the accuracy of the proposed models. The main contribution of our method is the novelty of combination of these methods in fuzzy RES. Before this work, all Fuzzy RESs only use simple membership functions and uniform spanning. Using GA for spanning and normal distribution as membership function based upon our latest work is the first work in fuzzy RES. To verify the selected proposed model, rock mechanics tests are conducted on nine hard stone samples, and the diamond saw wear is measured and compared with the proposed model. According to the results obtained, the proposed model exhibits acceptable capabilities in predicting the circular diamond saw wear.Keywords: Circular diamond saw wear, fuzzy rock engineering systems, Genetic Algorithm
-
مجله محیط و معدن، سال دهم شماره 2 (Spring 2019)، صص 493 -505تئوری محیط موثر قطبش القائی، مدل واهلش نوینی است که با ترکیب ریاضی ویژگی های ساختاری و پتروفیزیکی سنگ های قطبش پذیر در مقیاس دانه ها/ادخالهای تشکیلدهنده سنگ، طیف مقاومت ویژه/ رسانندگی مختلط آن ها را مدل سازی میکند. بازیابی پارامترهای مدل واهلشGEMTIP از داده های پلاریزاسیون القائی طیفی، به خاطر وابستگی غیرخطی داده های مشاهدهای به پارامترهای مدل و غیر یکتا بودن پاسخ مسئله، امری چالش برانگیز است. برای رفع این مشکلات و نیز گریز از نقاط بهینه محلی مرتبط با تابع هزینه بسیار پیچیده، میتوان از روش الگوریتم ژنتیک استفاده کرد، اما اجرای این روش هم به صرف زمان زیادی نیاز دارد. برای رفع این کاستی میتوان آن را با الگوریتم های سریعتر مانند الگوریتم بهینه سازی ازدحام ذرات تلفیق کرد. لذا هدف از انجام این پژوهش بررسی قابلیت بازیابی پارامترهای مدل واهلش GEMTIP بیضوی از داده های قطبش القائی طیفی با استفاده از تلفیق روش های الگوریتم ژنتیک و الگوریتم بهینه سازی ازدحام ذرات است. برای این منظور، در هر مرحله از اجرای الگوریتم، بهترین پاسخ های یافته شده با استفاده از روش الگوریتم ژنتیک به عنوان فضای جستجوی روش بهینه سازی ازدحام ذرات در نظر گرفته شده و سپس بهترین پاسخ یافته شده با استفاده از این روش، جهت به روزرسانی پارامترهای مدل در نظر گرفته میشود. نتایج مدلسازی نشان میدهد که با استفاده از روش ارائه شده در این پژوهش میتوان پارامترهای مدل، به جز ثابت زمانی مرتبط با داده های حاوی نوفه را به خوبی بازیابی کرد که عدم بازیابی صحیح ثابت زمانی مرتبط با همبستگی منفی این پارامتر با پارامتر بیضوی ادخال های قطبش پذیر است. همچنین با استفاده از این الگوریتم، مدت زمان لازم برای همگرایی به نقطه بهینه عام، به میزان قابل توجهی کاهش می یابدکلید واژگان: تئوری محیط موثر قطبش القائی، الگوریتم ژنتیک، الگوریتم بهینه سازی ازدحام ذرات، قطبش القائی طیفیThe generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging issue because of the highly non-linear dependency of the observed data on the model parameter and non-uniqueness of the problem. To solve these problems as well as scape the local minima of the highly complicated cost function, the genetic algorithm (GA) can be applied but it has proven to be time-intensive computationally. However, this drawback can be resolved by incorporating a faster algorithm, e.g. particle swarm optimization (PSO). The aim of this work is to investigate whether recovering the model parameter of the ellipsoidal GEMTIP model from SIP data using the combined GA and PSO algorithms is possible. To achieve this aim, we set the best calculated individuals using GA as the search space of PSO, and then the best location achieved by PSO in each iteration is assigned as the updated model parameters. The results of our research work reveal that the model parameters can effectively be recovered using the approach proposed in this paper but the time constant of a noisy data that arises from the adverse dependency of this parameter on the ellipticity of a polarizable grain. Moreover, the execution time of the ellipsoidal GEMTIP modeling of complex resistivity data can be significantly improved using the proposed algorithm.Keywords: Generalized Effective-Medium Theory of Induced Polarization, Genetic Algorithm, Particle Swarm Optimization, Spectral-Induced Polarization
-
فصلنامه مهندسی معدن، پیاپی 41 (زمستان 1397)، صص 91 -101به دلیل نبود معیاری مانند عیار، تصمیم گیری در مورد استخراج یک معدن سنگ با دشواری مواجه است. از طرفی دیگر، هدف از بهینه سازی در معادن سنگ تولید بلوکهایی به شکل مکعب مستطیل با ابعاد استاندارد است. در این تحقیق، شاخصی به نام نسبت کوب دهی (CPR) تعریف شده است که معادن سنگ را از نظر عیار هندسی بلوکها به سه رده خوب، متوسط و ضعیف طبقه بندی می کند. علاوه بر این، با اعمال صفحات استخراجی و مقایسه CPR در جهت های مختلف می توان جهت استخراج بهینه را نیز تعیین کرد. این شاخص در معدن تراورتن اسک، استان مازندران، ایران، مورد استفاده قرار گرفت و مقدار آن برابر با 22 درصد محاسبه شد که کیفیت هندسی بلوک های معدن را در رده ضعیف قرار می دهد. امتداد جهت استخراجی بهینه N60W ارزیابی شد که نشان می دهد برای کسب بیشترین کوب دهی، جهت استخراجی فعلی باید 35 درجه به طرف شمال تغییر کند که در اثر اعمال آن، میانگین حجم بلوک های برجا 241٫63 متر مکعب، میانگین ابعاد کوب ها برابر (m)2٫93×(m)2٫4×(m)2٫25 و میزان کوب های قابل فروش برابر 53369٫14 متر مکعب حاصل می شود که بر اساس نرخ موجود، منجر به درآمد حدود 130 میلیارد ریالی برای این معدن خواهد شد.کلید واژگان: معدن سنگ ساختمانی، مکعب مستطیل، الگوریتم ژنتیک، نسبت کوب دهی، جهت استخراج بهینهDue to the lack of a criterion such as grade, it is difficult to decide on the extraction of a stone quarry. On the other hand, the goal of optimization in quarries is to produce blocks in the shape of a standard rectangular cuboid. In this research, an index called the Cubic Productivity Ratio (CPR) is defined that classifies the quarries in terms of the geometric grade of the blocks into three categories: good, moderate, and poor. In addition, by applying cutting planes and comparison of CPR values for different directions, the optimum cutting direction can also be determined. This index was implemented in the Ask Travertine quarry, Mazandaran province, Iran, and its value was calculated to be 22%, which places the quarry in a poor level in terms of block geometric quality. The optimal direction was found at N60w, indicating that in order to get the most yield, the current direction should be adjusted 35 degrees to the north. By doing that, the average volume of blocks will be at 241.63 cubic meters, the average dimensions of the cuboids will be equal to 2.93 (m) × 2.4 (m) × 2.25 (m) and the amount of marketable cuboids will be 53369.14 cubic meters, which, according to the current sale price of raw blocks, will result in revenue of about 130 billion IRR.Keywords: Dimension stone quarry, rectangular cuboid, genetic algorithm, Cubic Productivity Ratio, Optimum cutting direction
-
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization technique.
The model perturbation towards the objective function is performed recurring to direct sequential simulation and co-simulation. This new algorithm was applied to a synthetic dataset with and without noise. The results obtained for the inverted impedance were satisfactory in both cases. In addition, a real dataset was chosen to be applied by the algorithm. Good results were achieved regarding the real dataset. For the purpose of validation, blind well tests were done for both the synthetic and real datasets. The results obtained showed that the algorithm was able to produce inverted impedance that fairly matched the well logs. Furthermore, an uncertainty analysis was performed for both the synthetic and real datasets. The results obtained indicate that the variance of acoustic impedance is increased in areas far from the well location.Keywords: Seismic, Acoustic Impedance, Direct Sequential Simulation, Stochastic Seismic Inversion, Genetic Algorithm -
International Journal of Mining & Geo-Engineering, Volume:51 Issue: 1, Winter and Spring 2017, PP 47 -52In an Open-Pit Production Scheduling (OPPS) problem, the goal is to determine the mining sequence of an orebody as a block model. In this article, linear programing formulation is used to aim this goal. OPPS problem is known as an NP-hard problem, so an exact mathematical model cannot be applied to solve in the real state. Genetic Algorithm (GA) is a well-known member of evolutionary algorithms that widely are utilized to solve NP-hard problems. Herein, GA is implemented in a hypothetical Two-Dimensional (2D) copper orebody model. The orebody is featured as two-dimensional (2D) array of blocks. Likewise, counterpart 2D GA array was used to represent the OPPS problems solution space. Thereupon, the fitness function is defined according to the OPPS problems objective function to assess the solution domain. Also, new normalization method was used for the handling of block sequencing constraint. A numerical study is performed to compare the solutions of the exact and GA-based methods. It is shown that the gap between GA and the optimal solution by the exact method is less than % 5; hereupon GA is found to be efficiently in solving OPPS problem.Keywords: Open-Pit Mine, production scheduling, metaheuristic, genetic algorithm
-
Like most limestone mines, which produce the raw materials required for cement companies, the transportation cost of the raw materials used in the Shahrood Cement Company is high. It has been tried to build the crushing and grinding plant close to the mine as much as possible. On the other hand, blasting has harmful effects, and the impacts of blast-induced damages on the sensitive machinery, equipment, and buildings are considerable. In such mines, among the blasting effects, blast-induced vibrations have a great deal of importance. This research work was conducted to analyze the blasting effects, and to propose a valid and reliable formula to predict the blast-induced vibration impacts in such regions, especially for the Shahrood Cement Company. Up to the present time, different indices have been introduced to quantify the blast vibration effects, among which peak particle velocity (PPV) has been widely considered by a majority of researchers. In order to establish a relationship between PPV and the blast site properties, different formulas have been proposed till now, and their frequently-used versions have been employed in the general form of , where W and D are the maximum charge per delay and the distance from the blast site, respectively, and , , and describe the site specifications. In this work, a series of tests and field measurements were carried out, and the required parameters were collected. Then in order to generalize the relationship between different limestone mines, and also to increase the prediction precision, the related data for similar limestone mines was gathered from the literature. In order to find the best equation fitting the real data, a simple regression model with genetic algorithm was used, and the best PPV predictor was achieved. At last, the results obtained for the best predictor model were compared with the real measured data by means of a correlation analysis.Keywords: Blasting, Blast-Induced Vibration, PPV, Limestone Mine, Cement Company, Genetic Algorithm
-
اساسی ترین رابطه محاسبه اشباع از آب در مخازن هیدروکربوری رابطه آرچی است. این رابطه سه پارامتر سیمان شدگی (m)، توان اشباع (n) و پیچاپیچی (a) دارد که پارامترهای آرچی نامیده می شوند. تغییر اندک در هر یک از این ضرایب باعث تغییرات قابل توجه در محاسبه اشباع از آب و در نتیجه حجم هیدروکربور مخزن می شود. در این مقاله روش الگوریتم ژنتیک برای محاسبه پارامترهای رابطه آرچی در یک چاه اکتشافی در یکی از مخازن هیدروکربوری کربناته جنوب غرب ایران به کار گرفته شده است. نتایج اجرای این روش مقادیر 354/2، 257/2 و 902/0 را به ترتیب برای سه پارامتر سیمان شدگی (m)، توان اشباع (n) و پیچاپیچی (a)، نشان می دهد. مقدار خطای الگوریتم ژنتیک در فرآیند محاسبه این مقادیر برابر 1641/0 است. مقادیر اشباع شدگی پیش بینی شده با استفاده از این روش با مقادیر اشباع شدگی واقعی، ضریب همبستگی % 62 را نشان می دهند.کلید واژگان: اشباع شدگی، هیدروکربور، ضرایب آرچی، الگوریتم ژنتیک، مخزن کربناتهArchies equation is one of the most fundamental equations for water saturation calculation that includes three factors: cementation factor (m), tortuosity (a) and saturation exponent (n). These factors are called the Archies coefficients or parameters. Any small changes in these coefficients make significant difference in the water saturation, and hence, in the volume of the hydrocarbon. Considering the geological and petrophysical properties of the hydrocarbon reservoirs, there is no accurate and reliable method for calculating these coefficients in all conditions. Here, the genetic algorithm method was used for calculating the Archies coefficients in an exploration well in a carbonate hydrocarbon reservoir located in southwest of Iran. As a result, the values 2.354, 2.257 and 0.902 were obtained for the Archies parameters m, n and a, respectively. The genetic algorithm error was also equal to 0.1641. The overall fitting between predicted water saturation amounts versus measured ones was assessed through the correlation coefficient R equal to 62%.Keywords: Saturation, Hydrocarbon, Archie's coefficients, Genetic Algorithm, Carbonate reservoir
-
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation wells to the distance of observation wells from the centre of pit were used as inputs to the network. An ANN-GA with 4-5-3-1 arrangement was found capable to predict the groundwater inflow to mine pit. The accuracy and reliability of model was verified by field data. Predicted results were very close to the field data. The correlation coefficient (R) value was 0.998 for training set, and in testing stage it was 0.99.Keywords: Groundwater Inflow, Mine Pit, Genetic Algorithm, Artificial Neural Network, Hybrid Model
-
در فرآیند فلوتاسیون برای جدایش مطلوب ذرات اغلب به بیش از یک مرحله نیاز است. طراحی مدارهای فلوتاسیون به طور معمول بر اساس قوانین تجربی است. به همین دلیل، در اکثر موارد آن ها در شرایط بهینه کار نمی کنند. برای طراحی و بهینه سازی مدارهای فلوتاسیون می توان از الگوریتم بهینه ساز وراثتی استفاده کرد. در مسئله بهینه سازی ترکیب مدار فلوتاسیون، کارایی متالورژیکی مدار (راندمان و محتوی خاکستر) را می توان به عنوان تابع شایستگی برای الگوریتم وراثتی تعریف کرد با توجه به این که هر یک از این دو عامل راندمان و محتوی خاکستر کنسانتره در جهت مخالف هم حرکت می کنند نیاز به روش های بهینه سازی چند هدفه است. بهینه سازی ترکیب مدار فلوتاسیون کارخانه زغالشویی زرند با دو روش مجموع وزن دار و بهینه Paretoانجام شد. با انجام بهینه سازی این امکان فراهم شد تا با حفظ کیفیت کنسانتره نهایی (خاکستر کمتر از 11 درصد) راندمان از 6/57 درصد در مدار اولیه به 8/65 درصد در بهترین ترکیب مدار افزایش یابد. با اجرایی کردن مدار بهینه پیشنهادی در کارخانه، راندمان مدار جدید نسبت به مدار اولیه 7/6 درصد افزایش یافت. مقایسه انحراف معیار نسبی راندمان و محتوی خاکستر به دو روش مجموع وزن دار و بهینه Paretoنشان داد که نتایج حاصل از روش بهینه Paretoپایدارتر است.
کلید واژگان: فلوتاسیون، بهینه سازی، چیدمان مدار، الگوریتم وراثتیJournal of Aalytical and Numerical Methods in Mining Engineering, Volume:2 Issue: 3, 2014, PP 62 -69In flotation، it is customary to use more than one stage to achieve an acceptable level of separation of valuable minerals. Flotation circuit design is usually accomplished using empirical rules which at most cases they do not operate at optimum conditions. In design and optimization of flotation circuits، genetic algorithms could be used. In flotation circuit configuration optimization problem، metallurgical parameters such as yield and ash content could be used as the fitness function for the algorithm. Since there is a tradeoff between the yield and concentrate ash content (i. e.، they move in opposite directions)، multi-objective optimization methods are needed. Optimization of the Zarand coal processing plant flotation circuit was carried out by twoMethodssum of weighted factors and Pareto optimum. The results indicated that it is possible to increase the yield from 57. 6% for the current configuration to 65. 8% for the proposed one. This was achieved by a three-stage configuration while keeping the quality of the concentrate ash content (10. 9%) within an acceptable level.Keywords: Flotation, Optimization, Circuit configuration, Genetic algorithm -
مدول تغییر شکل پذیری توده سنگ (Em) به عنوان مهم ترین خصوصیت برای طراحی پروژه های مهندسی سنگ مطرح است و بهترین نماینده برای رفتار مکانیکی پیش از شکست توده سنگ است. به دلیل هزینه بالا و زمان بر بودن و مشکلات اجرایی در انجام دقیق آزمایش های برجا، روش های غیرمستقیم مانند روابط تجربی و شبکه های پس انتشار عصبی (BPN) جایگاه بهتری پیدا می کنند. از این میان BPN دارای کاربردی گسترده در تخمین خصوصیات توده سنگ از جمله Em است. محققین متعددی از روش سعی و خطا برای ایجاد یک BPN کارا بهره گرفته اند که نیاز به صرف زمان و مهارت کاربر دارد. اما در این مطالعه، از الگوریتم ژنتیک برای بهینه کردن پارامتری موثر BPN به منظور تخمین Em در رشته کوه های زاگرس ایران استفاده شد. برای این منظور، یک بانک اطلاعاتی از پروژه های مختلف رشته کوه های زاگرس جمع آوری و Em سنگ آهک آسماری تخمین زده و در نهایت نتایج به دست آمده از روش عصبی - ژنتیک با روش عصبی سعی و خطا مقایسه شد. که براساس نتایج به دست آمده روش عصبی- ژنتیک دارای دقت و سرعت بالاتر در تخمین Em است.کلید واژگان: الگوریتم ژنتیک، رشته کوه زاگرس، شبکه پس انتشار عصبی، مدول تغییر شکل پذیری توده سنگThe deformation modulus of rock mass (Em) is the most representative parameter of the pre-failure mechanical behavior of the rock material and of the rock mass .Due to the high cost and measurement difficulties of in situ tests, the predictive models using regression based statistical methods, back propagation neural networks (BPN) and fuzzy systems are recently employed for the indirect estimation of the modulus .Among these methods, the BPN has been reported to be very useful in modeling the rock material behavior, such as Em, by many researchers .Despite its extensive applications, design and structural optimization of BPN are still done via a time-consuming reiterative trial-and-error approach . However, in this research, the genetic algorithm (GA) is utilized to find the optimal parameters of BPN, such as the optimal number of neurons in hidden layer, learning rates and momentum coefficients of hidden and output layers of network. Then, the result is compared with that of trial-and-error procedure . For the purpose, a data base including118 data sets was employed from six dam sites locations in Zagros Mountains of Iran. According to the results, the GA -ANN model has higher accuracy than the trial-and-error model in the estimation of Em.Keywords: Deformation modulus of rock mass, Zagros mountains, Back propagation neural network, Genetic algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.