regression
در نشریات گروه پزشکی-
Background
As of 2020, prostate cancer is the fifth most common cause of fatalities due to cancer in males and is also the second most common type of cancer overall. The purpose of this study was to look into the patterns of prostate cancer-related mortality and years of life lost (YLL) in the province of Fars.
Materials and MethodsData on all prostate cancer-related fatalities in the province of Fars were gathered for this cross-sectional investigation via the electronic population-based death registration system (EDRS). We calculated the crude mortality rate, age-standardized mortality rate (ASMR), years of life lost (YLL), and YLL rate. The JoinPoint Regression method was used to analyze the patterns over time.
ResultsDuring the 16-year study period from 2004 to 2019, there were 1,836 deaths from prostate cancer in Fars province. The crude and standardized mortality rates showed an increasing trend over this period. The total number of years of life lost (YLL) due to prostate cancer during these 16 years was 15,785. The highest number of YLL occurred in the age group of 70-79 years, while the lowest was observed in individuals under 30. According to join point regression analysis, the YLL rate due to premature mortality increased over the 16 years, with an annual percent change (APC) of 2.3% (95% CI 0.2 to 4.4, p=0.034).
ConclusionProstate cancer-related death and YLL are on the rise, according to the study's findings. Therefore, it is necessary to improve diagnostic and therapeutic measures; more studies in this field are also recommended.
Keywords: Prostate Cancer, Mortality Rate, Years Of Life Lost, Regression, Iran -
Background
The Qazvin Plain is one of Iran’s largest and most important agricultural regions. It is situated on the Qazvin aquifer. Understanding the relationship between surface features such as topography, land use, and soil type with the quantitative and qualitative characteristics of the aquifer is crucial for this region.
MethodsIn this study, the Soil and Water Assessment Tool (SWAT) model was used to delineate the hydrological response units (HRUs) of the plain. These units were calculated based on common characteristics, including land use, topography, and soil type. Additionally, the MODFLOW model was used to simulate groundwater levels based on the hydraulic conductivity (K) map, well pumping tests, and other parameters. This model served as a quantitative indicator of groundwater resources. Furthermore, the spatial distribution map of electrical conductivity (EC) values was used as a qualitative indicator of groundwater resources. In the Qazvin aquifer, EC is the most important limiting factor for water quality. The relationship between these factors was then analyzed using geographically weighted regression (GWR).
ResultsThe values of EC with a statistic of R2 = 0.66 and groundwater level with a statistic of R² = 0.79 were controlled by surface characteristics, indicating a strong relationship between these variables and surface features.
ConclusionThis research can highly assist water and environmental resource managers and decision-makers in managing the quantity and quality of water in this region.
Keywords: Groundwater Quality, SWAT, MODFLOW, Regression, Pollution -
Background
Lead (Pb) contamination in urban environments poses significant health risks, especially in densely populated areas. Urban parks, which offer vital green spaces, can serve as indicators of heavy metal pollution, including Pb from vehicular emissions. This study assesses Pb contamination and its spatial drivers in the surface dust of small parks in central Isfahan, Iran.
MethodsDust samples were collected from 45 urban parks and analyzed for Pb concentration using inductively coupled plasma mass spectrometry (ICP-MS). Generalized Linear Models (GLMs) were applied to assess the relationship between Pb levels and environmental spatial variables, including road density from Kernel Density analysis, elevation, and normalized difference vegetation index (NDVI).
ResultsPb concentrations ranged from 28.7 to 36.7 mg/kg, with road density showing a positive correlation, while elevation and NDVI were negatively associated with Pb levels. The model explained 50% of the variance in Pb concentrations, highlighting traffic and topography as significant contributors to Pb deposition.
ConclusionThe study underscores the need for targeted pollution control measures, particularly in low-lying, high-traffic areas. Increasing urban vegetation was found to mitigate Pb contamination, suggesting a potential role for urban greening in mitigating pollution.
Keywords: Lead Contamination, Urban Parks, Isfahan, Road Density, Regression -
Background
This study aimed to investigate the trend of YLL created by four Non-communicable diseases (NCDs) in Fars province.
Materials and MethodsData on the total number of NCD fatalities in southern Iran from 2004 to 2019 were gathered for this research from the population-based Electronic Death Registry System (EDRS). The JoinPoint Regression method was used to analyze the trends in the crude and age-standardized mortality rate and YLL rate.
ResultsDuring the study period, 54,825 deaths occurred in terms of four NCDs in 30-70 years Fars in the province. The total YLL due to premature death during the sixteen-year study period was 558,316 in males and 401,595 in females. The largest number of YLL was caused by cardiovascular diseases 599,189 (62.7%). The sixteen-year trend of years of YLL owing to CVD was declining for both men and women, according to the joinpoint regression analysis. However, there was a constant tendency for females and a rising trend for men with cancer. Additionally, the YLL rate for diabetes in both boys and females showed steady trends. Furthermore, the trend of YLL rate due to chronic respiratory disease was increasing for males but had a stable trend for females.
ConclusionsThe result of this study indicates that the YLL rate because of cardiovascular diseases has been declining. The YLL rates for diabetes, cancers, and chronic respiratory diseases have either increased or remained stable. These results carry important implications for public health policies and educational initiatives aimed at enhancing the prevention, early detection, and treatment of these diseases.
Keywords: Years Of Life Lost, Mortality Rate, Regression, Noncommunicable Diseases, Iran -
زمینه و هدف
سیستم استرسی یکی از مهم ترین بخش های حفظ حیات جاندار می باشد. شاخص های نوسانات ضربان قلب(HRV) و هورمون کورتیزول دو خروجی فعالیت سیستم استرسی هستند. فعال بودن سیستم استرسی الزاما توسط فرد درک نمی شود و بخشی از آن در سطح ناخودآگاه است. هدف این مطالعه ارائه الگوریتم پیش بینی کننده مقدار عددی غلظت کورتیزول با استفاده از شاخصهای HRV است.
مواد و روش هانمونه های این مطالعه شامل 601 مرد بزرگسال سالم (بین 20 تا 50 سال) بود. در این تحقیق به کمک یادگیری ماشین، الگوریتم هایی طراحی شدند که به کمک شاخص های HRV، مقدار عددی کورتیزول بزاقی که بین ساعت ساعت 9:00 صبح تا 14:00 گرفته شده بود را پیش بینی کردند. در هر یک از الگوریتم ها مقدار پیش بینی شده با مقدار واقعی بیان شده مقایسه گردید تا مشخص شود کدام موفق تر بوده است.
یافته هانتایج مطالعه حاضر نشان داد که شاخص های فرکانسی و غیر خطی HRV قادرهستند به کمک الگوریتم های رگرسیون Multi Layer Perceptron(MLP) ، XGBoost(XGB)، Support Vector Machine(SVM) و Radial Basis Function(RBF) مقدار کورتیزول بزاقی را در نمونه ها به ترتیب با میانگین خطای مطلق ، 7.78، 8.06، 8.37 و 7.43 درصد پیش بینی کنند.
نتیجه گیریدر این مطالعه مشخص شد که مجموعه ای از شاخص های خطی و غیر خطی HRV با قدرت بالا قادرند مقدار کورتیزول بزاقی را در بهترین حالت با درصد خطای پایین 43/7 توسط الگوریتم RBF پیش بینی کنند و بجای خودگزارشی استرس که بخش فیزیولوژیک را پوشش نمی دهد، می تواند ابزار دقیق تری در ارزیابی هوشمند سیستم استرسی باشد.
کلید واژگان: استرس، کورتیزول بزاقی، ضربان قلب، یادگیری ماشین، رگرسیونBackground and purposeThe stress system is one of the most important parts of maintaining living of beings. The indices of heart rate variation (HRV) and cortisol hormone are two outputs of stress system activity. The activation of the stress system is not necessarily in a consciousness state and part of it is in the unconscious. The aim of this study is to provide an algorithm for predicting the numerical value of the salivary cortisol concentration using HRV indices.
Materials and methodsThe samples of this study included 601 healthy adult men (between 20 and 50 years old). The used algorithms were designed to predict the numerical value of salivary cortisol taken from 9:00 AM to 2:00 PM with HRV indicators. In each of the algorithms, a predicted value is compared with the actual value to determine which was more successful.
ResultsThe results of this study showed that the frequency and non-linear indicators of HRV are able to predict the amount of salivary cortisol with use of Multi Layer Perceptron (MLP), XGBoost(XGB), Support Vector Machine(SVM) and Radial Basis Function(RBF) regression algorithms with the average absolute error, 7.78, 8.06, 8.37 and 7.43 percent respectively.
ConclusionIn this study, it was found that a set of linear and non-linear indicators of HRV with high power can predict the amount of salivary cortisol in the best case with a low error percentage of 7.43 by the RBF algorithm, and instead of stress self-report that does not cover the physiological part. It can be a more accurate tool in the intelligent evaluation of the stress system.
Keywords: Stress, Salivary Cortisol, Heart Rate, Machine Learning, Regression -
Journal of Evidence Based Health Policy, Management and Economics, Volume:8 Issue: 4, Dec 2024, PP 273 -284Background
The COVID-19 virus (Corona) is recognized as one of the greatest global health challenges in the 21st century. In addition to its unwanted effects on individual health, this disease has also had significant financial and economic impacts. Hospitals, as the most important centers for providing health services, play a very vital role.
MethodsThis study investigated and analyzed direct costs of treating COVID-19 in Imam Sajjad (AS) State Hospital in Shahriar. To this end, after performing the Kolmogorov-Smirnov test and confirming the non-normality of data distribution, non-parametric Wilcoxon signed-rank test was used.
ResultsThe results showed that the hypothesis of normality of the data distribution for the age parameter was rejected. Also, comparisons showed that gender and age variables had an impact on treatment costs, while having an underlying disease and disease severity had no significant impact on costs. In regression analyses, costs of testing, medication, CT scan, radiology, and echocardiography had an impact on the total cost of treatment. Moreover, the cost paid by insurance was strongly correlated with the total cost of treatment.
ConclusionThe analyses showed that some factors such as gender, age, and specific costs such as testing and medications had an impact on treatment costs. These findings can help improve financial resource management in dealing with similar diseases.
Keywords: COVID-19, Treatment Costs, Hospital, Wilcoxon, Regression -
مقدمه
یکی از مهم ترین ارکان بهبود خدمات بهداشت و درمان، وضعیت بیمه های درمان تکمیلی است که باعث افزایش دسترسی مردم به مراقبت های بهداشتی می شود. ارزیابی دقیق و علمی ریسک صدور بیمه نامه درمان یکی از حساس ترین و مهم ترین مراحل ارزیابی ریسک است و انجام آن باعث شناسایی مشتریان پرریسک و تعیین نرخ بیمه سلامت، متناسب با ریسک مشتریان می شود؛ لذا مطالعه حاضر با هدف کلاس بندی و نرخ گذاری بیمه شدگان درمان با استفاده از رویکرد ماتریس ریسک انجام گرفت.
روش بررسیبرای ارزیابی ریسک بیمه شده ها، یک مدل دومرحله ای همراه با رویکرد ماتریس ارزیابی ریسک ارائه شده است که با استفاده از آن بتوان بیمه شده ها را در کلاس های مختلف ریسک طبقه بندی کرد. برای این منظور ابتدا در گام اول احتمال ادعای خسارت را با استفاده از رگرسیون لجستیک براساس ریسک فاکتورهای سن، جنسیت و موقعیت جغرافیایی پیش بینی کرده و در گام بعد شدت خسارت با استفاده از رگرسیون چندکی پیش بینی شد.
یافته هادر این مطالعه، مدل ارزیابی ریسک با رویکرد ماتریس ریسک ارائه شد که با به کارگیری آن می توان برای بیمه نامه ها سه کلاس ریسک بحرانی (R1 R1) متوسط (R2 R2) و قابل قبول (R3 R3) ارائه کرد.
نتیجه گیریبا استفاده از نتایج رویکرد ماتریس ریسک می توان برای بیمه نامه ها حق بیمه ای متناسب با کلاس ریسکی آنها تعیین نمود. این موضوع می تواند به افزایش سطح رضایتمندی مردم، حرکت کردن در مسیر عدالت، رسیدن به حق بیمه منصفانه، گسترش یافتن فضای امنیت و نگاه علمی کردن به صنعت بیمه کشور کمک کند.
کلید واژگان: کلاس بندی، بیمه، سلامت، ریسک، رگرسیونIntroductionOne of the most important pillars of improving healthcare services is the state of supplementary medical insurances, which increase people's access to healthcare. The accurate and scientific assessment of the risks of issuing a medical insurance policy is one of the most sensitive and important stages of risk assessment, and performing it leads to the identification of high-risk customers and the determination of the health insurance policy rate, in accordance with the customers' risk. Therefore, the present study aimed to classify and rate health insurance beneficiaries using a risk matrix approach.
MethodsIn order to assess the risk of insured persons, a two-step model has been presented along with the risk assessment matrix approach, which can be used to classify the insureds into different risk classes. For this purpose, in the first step, the probability of claiming damages using logistic regression based on age, gender and geographical location risk factors are predicted and in the next step the severity of the damage is predicted using quantile regression.
ResultsFinally a risk assessment model is presented with a risk matrix approach, which presents three risk class; critical (R_1), moderate (R_2) and acceptable (R_3) risk class.
ConclusionUsing the results of the risk matrix approach, insurance premiums have been determined for the insurance policies according to their risk class. This can help increase people's satisfaction, move towards justice, achieve fair insurance premiums, expand the security environment, and take a scientific look at the country's insurance industry.
Keywords: Classification, Insurance, Health, Risk, Regression -
Background
The growth of children aged 0–60 months can impact their subsequent growth and development. This study aims to identify the vulnerable age for boys and girls, who experience growth retardation within this age range.
MethodsThe study design used was a cross‑sectional approach in which each child’s measurement data was only taken once. The data were obtained from weighing results at the Health Integrated Service Post in South Sulawesi Province in 2022. The number of data analyzed was 698 children, namely 369 boys and 329 girls by considering the factors of age, weight, and height. We used a nonparametric bi‑response regression model estimated using a penalized spline. The knots used are 12, 24, 36, and 48 on each model.
ResultsThe value of the penalized spline regression coefficient in the model indicates that the child’s growth is slowed down and is not within normal limits. This can be seen in the weight and height of boys from the age of reaching 12 months to 24 months, only increasing by about 0.3 kg and 0.3 cm. For girls, the problem occurs from the age of 24 to 36 months, namely their weight increases by about 0.6 kg, and their height increases by about 1 cm.
ConclusionsThe analysis results show that boys’ growth slows down at 2 years of age and continues until 5 years of age. In the case of girls, their growth begins to slow when they are 3 years old until they reach 5 years old.
Keywords: Growth Retardation, Height, Regression, Weight -
Background
Health expenditures of countries have an increasing trend in general and identifying variables affecting health expenditure is an important step toward budget planning for financial sustainability. This study aimed to examine the health expenditure of the Organisation for Economic Co-operation and Development (OECD) countries and identify influential variables.
MethodsThe data for the years 2000-2018 of OECD countries’ current health expenditure (% of GDP) and economic, demographic, and health variables, considered to affect the health expenditure, to include in the anal-ysis were extracted using the World Bank database (World Bank 2021). Data analys using Chi-Squared Automatic Interaction Detection (CHAID) decision tree technique. Fifteen variables in economic, demographic, and health categories are selected to build the CHAID decision tree.
ResultsAs a result of CHAID analysis, five variables are identified as influential on current health expenditure, which are gross domestic product per capita, life expectancy at birth, death rate, out-of-pocket expenditure, and fertility rate. Thirty-seven OECD countries are classified into eleven groups by the decision rules in terms of the current health expenditure. The high value of the correlation coefficient between the predicted values and the actual values of health expenditure of countries indicates good prediction performance. Moreover, the regression models built using the identified influential variables as explanatory variables give good forecast accuracy.
ConclusionAs an effective tool, the CHAID decision tree technique provides a rule-based model in the form of a tree with nodes and branches, illustrating the splitting process graphically with identified variables and their cut-off points for classification and prediction.
Keywords: CHAID Decision Tree, Regression, Health Expenditure -
زمینه و هدف
برای کاهش هزینه های مدیریت سیستم های تصفیه فاضلاب، می توان از شبیه سازهای ریاضی و آماری استفاده نمود. این پژوهش باهدف پیش بینی کیفیت پساب یکی از تصفیه خانه های فاضلاب شهری شهر تهران با استفاده از الگوریتم های یادگیری ماشین طی سال های 1396 تا 1400 انجام گردید.
مواد و روش هااین مطالعه یک پژوهش توصیفی - تحلیلی است که در آن اطلاعات سیستم های پایش ورودی و خروجی تصفیه خانه فاضلاب دریافت و پاک سازی داده ها انجام گرفت. در مرحله دوم تبدیل داده ها به منظور آماده سازی ورود آن ها به الگوریتم های داده کاوی از طرق پالایش، پردازش و ایجاد متغیر ساختگی (Dummy) انجام شد. سپس، الگوریتم شبکه عصبی مصنوعی (ANN) و مدل درختی M5 به منظور یافتن بهترین مدل جهت پیش بینی غلظت COD در خروجی تصفیه خانه مورد بررسی قرار گرفت؛ در این راستا 70 درصد داده ها جهت یادگیری ماشین و 30 درصد به منظور اعتبارسنجی در نرم افزار پایتون مورداستفاده قرار گرفت. درنهایت با مدل رگرسیونی و مقایسه شاخص های R2 و RMSE به انتخاب بهترین مدل پرداخته شد.
یافته هانتایج نشان داد که ANN با ضریب تعیین 72/0عملکرد بهتری نسبت به مدل M5 با ضریب68/0در پیش بینی غلظت COD خروجی به عنوان شاخص کارایی تصفیه خانه دارد.همچنین بر اساس نتایج تحلیل رگرسیون از بین متغیرهای مستقل BOD5e و TSSe بیشترین همبستگی را با CODout داشتند.
نتیجه گیریدر پژوهش حاضر، نتایج مدل ANN و M5 بر اساس شاخص های آماری در محدوده قابل قبولی قرار گرفتند و می توان با موفقیت برای تخمین داده ها در تصفیه خانه های فاضلاب استفاده کرد.
کلید واژگان: الگوریتم های یادگیری ماشین، شبکه عصبی مصنوعی، درخت مدل M5، رگرسیون، اکسیژن خواهی شیمیاییBackgroundMathematical and statistical simulators can significantly reduce the management costs of wastewater treatment systems. This research aimed to predict the effluent quality of an urban wastewater treatment plant in Tehran using machine learning algorithms from 2017 to 2021.
MethodsThis descriptive-analytical study utilized monitoring data from the influent and effluent of the wastewater treatment plant, which were prepared for analysis. In the second stage, the data were refined, processed, and converted into dummy variables to facilitate entry into data mining algorithms. The Artificial Neural Network (ANN) algorithm and the M5 tree model were then evaluated to identify the best model for predicting the concentration of Chemical Oxygen Demand (COD) in the effluent. In this process, 70% of the data were allocated for training and 30% for validation using Python software. The best model was selected based on regression analysis, comparing the R² and RMSE indices.
ResultsThe findings indicated that the ANN model, with a coefficient of determination (R²) of 0.72, outperformed the M5 model, which had an R² of 0.68, in predicting the output COD concentration—an indicator of the treatment plant's efficiency. Additionally, regression analysis revealed that BOD₅ and TSS exhibited the highest correlation with CODout.
ConclusionThe results of the ANN and M5 models were within an acceptable range based on statistical indicators, demonstrating their potential for effectively estimating data in wastewater treatment plants.
Keywords: Machine Learning Algorithms, Artificial Neural Network, M5 Model Tree, Regression, Chemical Oxygen Demand -
سابقه و هدف
در سال های اخیر کاهش نرخ باروری در کشور از جمله استان مازندران رخ داده است. کاهش رشد جمعیت منجر به تغییرات اقتصادی، اجتماعی، فرهنگی و کاهش توان سیاسی و نظامی کشور می شود، لذا این مطالعه با هدف تحلیل مدل رگرسیونی آمیخته از عوامل مرتبط با انگیزه فرزندآوری در زوجین متاهل استان مازندران، انجام پذیرفت.
مواد و روش هااین مطالعه مقطعی-تحلیلی، در چهار شهر استان مازندران در فاصله زمانی مهر 1401 تا اسفند همان سال بر روی 468 زوج (936 نفر) تحت پوشش مراکز بهداشتی به روش نمونه گیری چند مرحله ای انجام شد. گردآوری داده ها با پرسشنامه های جمعیتی- اجتماعی، پرسشنامه انگیزه های فرزندآوری نقیبی و همکاران و پرسشنامه کوتاه شده شخصیت نئو رامستد و جان انجام شد. تجزیه و تحلیل داده ها با نرم افزار SPSS نسخه 22 انجام شد. سطح معنی داری در کلیه آزمون ها 05/0 در نظر گرفته شد. در توصیف متغیرهای کیفی از شاخص های آماری تعداد و درصد، و برای متغیرهای کمی از میانگین و انحراف معیار استفاده شد. جهت بررسی تاثیر همه عوامل بر روی انگیزه فرزندآوری زوجین با توجه به این که مطالعه به صورت زوجی می باشد، از مدل رگرسیون خطی آمیخته به روش پسرو استفاده شد.
یافته هادر این مطالعه میزان پاسخ دهی 2/93 درصد بود و آنالیز نهایی بر روی اطلاعات حاصل از 468 زوج انجام شد. میانگین و انحراف معیار سن زنان و مردان بترتیب 6/76 ± 35/64 و8/29±39/75 و طول مدت ازدواج 7/81±12/85بوده است. در این مطالعه 261 (55/8 درصد) از زنان خانه دار، 167 (35/7 درصد) از مردان کارمند، 329 (71/3درصد) از زنان دارای سابقه سزارین، 54 (11/5 درصد) از زوجین بدون فرزند و 372 (5/79 درصد) از زوجین ساکن شهر بودند. میانگین نمره انگیزه فرزندآوری زنان و مردان به ترتیب 9/36±60/82 و 8/29±60/58 بوده است. براساس ضریب رگرسیونی تطبیق داده شده، در زوجین با وضعیت اقتصادی اجتماعی مطلوب (0/001P<، 4/89-=β) و تا حدی مطلوب (p<0/001،2/29-=β) نسبت به افراد با وضع اقتصادی اجتماعی نامطلوب انگیزه کم تری برای فرزندآوری داشته اند. همچنین افراد با ویژگی شخصیتی برونگرا (001/0P<، 50/0-=β) نسبت به افراد با سایر ویژگی های شخصیتی انگیزه کم تری برای فرزندآوری داشته اند. نتایج نشان داد که با افزایش طول سال های زندگی مشترک، از انگیزه فرزندآوری زوجین کاسته می شود (0/001P<، 0/11-=β). در حالی که زوجینی که ابراز نموده بودند که خواستارتعداد فرزند بیش تری هستند (0/001P<،14/63=β) و نیز ترجیح به فرزند پسر داشته اند (0/05P<، 1/41=β) انگیزه بیش تری برای فرزند آوری داشتند. در این مطالعه بین نمره انگیزه فرزند آوری زوجین شهری و روستایی اختلاف معنی دار آماری وجود نداشت.
استنتاجدر این مطالعه نشان داده شد که عوامل فردی اجتماعی از جمله وضعیت اقتصادی اجتماعی، طول مدت ازدواج و ویژگی شخصیتی بر انگیزه فرزندآوری تاثیر می گذارد، به طوری که در زوجین برونگرا، دارای وضعیت اقتصادی اجتماعی مطلوب و با افزایش سال های ازدواج انگیزه فرزندآوری کاهش می یابد. لذا سیاستگذاران و برنامه ریزان بهداشتی باید توجه بیش تری به زوجین برونگرا در سال های اول زندگی مشترک داشته باشند.
کلید واژگان: انگیزه، فرزندآوری، فاکتور، رگرسیون، زوجینBackground and purposeIn recent years, there has been a decrease in the fertility rate in the country, including in Mazandaran province. A reduction in population growth led to economic, social, and cultural changes and a decrease in the political and military power of the country. Therefore, the goal of this study is to analyze the mixed regression model of the factors related to the motivation of childbearing in couples referring to the health centers of Mazandaran province.
Materials and methodsThis cross-sectional-analytical study was conducted in four cities of Mazandaran province between October and March 2022 on 468 couples using a multi-stage sampling method. Data collection was done with socio-demographic questionnaires, Naghibi et al. motivation childbearing, and Rammstedt and John Neo Personality Questionnaire. Data analysis was done with SPSS version 22 software. The significance level was considered 0.05 in all tests. Statistical indicators of number and percentage were used to describe qualitative variables, and mean and standard deviation were used for quantitative variables. To investigate the effect of all factors on the couple's motivation to have children, given that the study is a couple, a mixed linear regression model was used using the regression method.
ResultsIn this study, the response rate was 93.2%, and the final analysis was performed on the information obtained from 468 couples. The mean and standard deviation of the age of women and men were 35.64±6.76 and 39.75±8.29, respectively, and the length of marriage was 12.85±7.81. In this study, 261 (55.8%) housewives, 167 (35.7%) working men, 329 (71.3%) of women with a history of cesarean section, 54 (11.5%) of childless couples and 372 (79.5 percent) of the couples lived in the urban. The mean score of motivation childbearing for women and men was 60.82±9.36 and 60.58±8.29, respectively. Based on the adapted regression coefficient, couples with favorable socioeconomic status (P<0.001, β=-4.89) and somewhat favorable (P<0.001, β=-2.29) compared to people with unfavorable socioeconomic status have less motivation for childbearing. Also, people with extroverted personality traits (P<0.001, β=-50.0) had less motivation for childbearing than people with other personality traits. The results showed that with the increase in the years of life together, the couple's motivation for childbearing decreases (P<0.001, β=-0.11). While the couples who expressed that they wanted more children (P<0.001, β=14.63) and had a preference for a son (P<0.05, β=1.41) had more motivation for childbearing. In this study, there was no statistically significant difference between the score of motivation childbearing of urban and rural couples.
ConclusionThis study has shown that individual and social factors such as socioeconomic status, length of the marriage, and personality traits affect the motivation to have children, so that in extroverted couples with a favorable socioeconomic status, the motivation to have children decreases with increasing years of marriage, so policymakers and Health planners should pay more attention to extroverted couples in the first years of marriage.
Keywords: motivation, childbearing, factor, regression, couples -
Introduction
Pediatric lymphomas are a significant childhood malignancy primarily treated with chemotherapy. While CT imaging is crucial for disease evaluation, its prognostic value remains under-explored. This study investigates the potential of CT characteristics to predict treatment response and clinical outcomes in pediatric lymphoma patients. Investigate the prognostic value of CT characteristics in pediatric lymphoma treated with chemotherapy.
Materials and MethodsRetrospective analysis of 69 patients' medical records and CT scans. CT features (regression, size, nodal appearance, site involvement) were correlated with treatment response (regression, stable disease, progression, relapse, resolution) via univariate analysis.
ResultsMost patients (76.8%) achieved good outcomes with tumor regression. However, a subset displayed stable disease (11.6%), progression (7.2%), relapse (1.4%), or resolution (2.9%). CT characteristics associated with poor outcomes (p < 0.05) included: multiple site involvement (neck, chest, abdomen), larger tumor size (>3 cm), discrete nodal appearance
ConclusionCT features hold promise for prognostication in pediatric lymphoma. Integrating these findings into clinical practice may improve risk stratification and guide personalized treatment strategies.
Keywords: Pediatric lymphoma, Computed tomography, Prognosis, Outcomes, Regression, Risk stratification -
In this note, we focus on statistical analysis and try to show the deleterious effects of inappropriate use of statistical analysis in medical research.Recently, Foji et al published an article entitled above and showed that the dermatology life quality index can predict the quality of life in patients with neurofibromatosis (1). However, these findings are doubtful due to the following reasons:1. The mean score of quality of life (the total score of the SF-36 questionnaire) is not clear.2. Although the correlation between SF-36 and DLQI can be informative, no correlation was found in the results section.3. The main aim of the study is to predict quality of life using the dermatology life quality index but there is no related model. The reported models are about the prediction of SF-36 dimensions.4. All the reported R-squares are very low (about 10%) indicating that the proposed models are not appropriate for the prediction aims.5. In regression modeling, statistical significance reflects no information regarding the prediction capability. Therefore, the interpretation of the results is not true. For more information, reading an article entitled “to explain or to predict” is highly suggested (2).6. To investigate the prediction capability of each variable, the amount of changes in the adjusted R-squares must be reported.7. In the data analysis section, it was claimed that the significant variables in simple regression were included in the multiple regression but it was not performed. For example, in the “role limitations due to emotional problems” dimension, all of the six variables are significant in the simple model, but just one variable was entered in the multivariate model.8. Finally, the linear regression is not appropriate for molding response variables with a limited range (the scores of SF-36 are between 0 and 100). The appropriate method for these outcomes is beta regression (3).In conclusion, the research hypothesis is rejected and the dermatology life quality index cannot predict the quality of life. Thus, the conclusion of Foji’s studies is not acceptable due to the fact that is not based on reported findings.Conflict of InterestNothing to declare.
Keywords: prediction, Regression, statistical analysis -
Background
This study aimed to identify the factors associated with suicidal ideation by classifying adolescents into three groups: no stress, interpersonal stress, as well as academic and career stress.
MethodUsing the data from the 16th Korea Youth Risk Behavior Web-Based Survey (2020), 15,343 adolescents were included in the study, and their socio-demographic characteristics as well as physical and psychological factors were assessed. A complex sample logistic regression was performed to identify factors associated with suicide.
ResultsThe following factors were significantly associated with suicide: fatigue recovery by sleep, body mass index, physical activity, and depression in the no stress group; current school, academic grade, drinking, depression, loneliness, and anxiety in the interpersonal stress group; and gender, current school, academic grade, father’s educational level, drinking, fatigue recovery by sleep, depression, loneliness, subjective health, smartphone overdependence, as well as anxiety in the academic and career stress group.
ConclusionTo prevent suicide among adolescents, it is necessary to consider these factors when developing educational policies.
Keywords: Adolescents, Stress, Suicidal ideation, Regression -
Introduction
Glioblastoma multiforme (GBM) is an aggressive case of primary brain cancer which remains among the most fatal tumors worldwide. Although, some in vitro and in vivo models have been developed for a better understanding of GBM behavior; a natural model of GBM would improve the efficiency of experimental models of human GBM tumors. We aimed the present study to examine the survival and durability of U87 cells in the brain of wild-type rats.
MethodsU87 cells were intracranially implanted in twenty-one wild-type rats. Tumor size and morphology as well as infiltration of immune cells were investigated at three-time points by H&E and immunohistochemistry (IHC).
ResultsThe results demonstrated that the inoculation of GBM cells led to the infiltration of host defense system cells which caused immunological regression of the tumor mass after six weeks. While the tumors successfully developed without any sign of host defense invasion in the second week of GBM inoculation. Also, a decrease in tumor size and infiltration of immune system cells were observed in the fourth week.
ConclusionThese data remarkably suggest that time plays a crucial role in activating the immune system against human GBM tumors in rats; it shows that the regression of tumor mass depends on a time slope.
Keywords: Glioblastoma multiforme, Regression, Immune system, Immunohistochemistry, Rat -
مقدمه :
در ایران با پیشرفت فناوری و توسعه ی آمارهای ثبتی لزوم استفاده از روش های داده کاوی بیشتر مورد توجه محققین قرار گرفته است. درخت رگرسیون و طبقه بندی یکی از روش های مهم در مدل بندی داده های حجیم است که برای کنترل جامعه و پیش بینی مورد توجه محققین زیادی قرار گرفته است. هدف این مطالعه تعیین متغیرهای تاثیرگذار بر فراوانی رخداد عوارض ناشی از دیابت است.
روش هااین پژوهش از نوع مقطعی-تحلیلی است. در این پژوهش، اطلاعات تمام افراد مراجعه کننده ی دیابتی تحت پوشش دانشگاه علوم پزشکی مشهد در سال 1397 از سامانه ی سینا استخراج گردید. 5016 نفر از افراد وارد شده به مطالعه دارای عارضه ی دیابت و 53613 نفر نیز بدون عارضه بودند. روش برازش مدل درخت رگرسیون و طبقه بندی و معیار سنجش مدل ضریب تعیین و مساحت منحنی راک و نمودار Lift است.
یافته هامنحنی راک برای مدل درختی برازش داده شده 8/73 درصد که نشان دهنده ی توان نسبتا بالای مدل است. براساس نمودار Lift قدرت تصمیم گیری بروز عارضه ی دیابت برای فردی که مراجعه می کند 5/3 برابر افزایش می یابد.
نتیجه گیرینتایج مدل رگرسیون و طبقه بندی درختی نشان داد که از متغیرهای کمی به ترتیب نزولی سن، عامل خطرسنجی، FBS، HbA1C، مجموع زمان فعالیت، کلسترول، FBS وHDL، بیماری قلبی و عروقی، سابقه ی سکته، فشار خون، کلسترول، تجویز استاتین، شغل با فعالیت فیزیکی سخت، منطقه ی زندگی، روغن مصرفی، پیاده روی، مصرف سبزی ها و جنسیت در فراوانی رخداد عارضه ی دیابت موثرتر از عوامل دیگر هستند.
کلید واژگان: درخت رگرسیون و طبقه بندی، عوارض دیابت، منحنی راکBackgroundIn Iran, with the advancement of technology and the development of registration statistics, the need to use data mining methods has attracted more attention from researchers. Regression and classification tree is one of the important methods in Big data modeling, which has attracted the attention of many researchers for community control and prediction. The purpose of this study is to determine the influencing variables on the occurrence of complications caused by diabetes.
MethodsThis paper is a cross sectional-analytical study. In this research, all diabetic patients covered by Mashhad University of Medical Sciences in 2017 were extracted from the SINA system. The number of diabetics with complications was 5016 and diabetics without complications were 53613. The method of fitting the regression tree model and classification and measurement criteria of the model is the coefficient of determination and the area of the Rock curve and the Lift diagram.
ResultsThe rock curve for the fitted tree model is 73.8%, which shows the relatively high power of the model. Based on the Lift chart, the decision-making power of diabetes complications increases 3.5 times for the person who comes to visit.
ConclusionThe results of the regression model and tree classification showed that, in descending order, age, risk assessment factor, FBS, HbA1C, total activity time, cholesterol, FBS and HDL, cardiovascular disease, history of stroke, blood pressure, cholesterol Statin prescription, job with hard physical activity, living area, consumed oil, walking, consumption of vegetables and gender are more effective than other factors in the occurrence of diabetes complications.
Keywords: Regression, Classification Tree, Complications, Diabetes, Rock curve -
Background
This study aimed to investigate the impact of frequency and word length on the eye movements in dyslexic students while they were reading Persian textbooks.
MethodsThe method applied to this study was quasi-experimental. The statistical population consisted of 56 male and female students in first, second, and third grades, referring to Learning Disorder Centers of Educational Organization in 2 and 10 districts in Tehran. Twenty-five students with dyslexia were selected using the available sampling method (participants included 12 boys and 13 girls who were in second, third, fourth, and fifth grade with 6, 8, 8, and 3 students, respectively). The eye-tracking device, SMI-RED-120Hz, was used for data collection. The multivariate analysis of variance (MANOVA) method was applied to analyze the data.
ResultsThere are two significant findings the effect of words' length on the number of fixation, fixation time, and the number of regression, as well as the effect of words' frequency on the number of fixation, fixation time, and the number of regressions.
ConclusionFrequency and word length on fixation and regression play an important role in the process of reading in dyslexic students.
Keywords: Dyslexia, Eye Tracking, Features Text, Fixation, Regression, Students -
Background
COVID-19 is the serious ruin of the current century that emaciated health, economy, and everyday life.
ObjectivesThis research assessed the condition and relation of tests, infections, recoveries, and deaths of SARS-CoV-2 from May 1 to June 30, 2021.
MethodsThe research plan was carried out from May 1 to June 30, 2021 (N = 61 days) to state the position of Bangladesh towards widespread COVID-19. The information in this study was obtained from different government organizations.
ResultsThe total cases, infections, recoveries, and deaths were 1100361, 149576, 136159, and 2864, respectively, during the study period. In May 2021, the total number of COVID-19 tests, infections, recoveries, and deaths was 439111, 36858, 49147, and 975, respectively. In June 2021, the total number of COVID-19 tests, infections, recoveries, and deaths was 661250, 112718, 87012, and 1889, respectively. The maximum number of COVID-19 infections was 1914 on May 4, recoveries 3870 on May 4, and deaths 69 on May 2. The minimum number of COVID-19 infections was 261 on May 15, recoveries 601 on May 16, and deaths 17 on May 26. The maximum number of COVID-19 infections was 8822, and recoveries were 4550 on June 30, while deaths were 119 on June 27. The minimum number of COVID-19 infections was 1447, and recoveries were 1667 on June 5, while deaths were 30 on June 3 and 7. In May and June, a positive correlation was observed between the tests and infections, recoveries, and deaths, and a negative relationship was found between a date with daily tests of COVID-19 (R2 = 0.8359, 0.2147, 0.1424, and 0.0035 and R2 = 0.6016, 1, 1, and 0.6488). At the 0.01 level of two-tailed Spearman, the relationships were positive and moderate to strong. The Spearman relationship for infections, recoveries, and deaths was 0.606, 0.756, 0.689, and 0.736. This research additionally showed a moderate to strong relationship between tests, infections, recoveries, and deaths of SARS-CoV-2.
ConclusionsCOVID-19 has spread rapidly to 64 districts in Bangladesh. The continuing occurrence of COVID-19 infections has emphasized the importance of the quick and developed 118 laboratory diagnoses to limit its spread. In this situation, people should avoid public gatherings as much as possible and return home as soon as possible after finishing work.
Keywords: Infections, Bangladesh, Regression, Deaths, Tests, Relationship, COVID-19, SARS-CoV-2, Recoveries -
مقدمه و اهداف
با توجه به اهمیت لیشمانیوز پوستی در ایران، پروژه ملی مبارزه با سالک در سال 1386 آغاز گردید. هدف از این طرح، ارزشیابی مداخله های میدانی در تغییرات بروز سالک در استان اصفهان در سال های 97-1380 با استفاده از مدل رگرسیون سری های زمانی منقطع (Interrupted time series) بود.
روش کاراین پژوهش به صورت یک مطالعه مقطعی تکرارشونده انجام شد. در توصیف روند بیماری از میزان بروز و حدود اطمینان 95 درصد استفاده شد. برآورد داده ها در فایل Excel وارد و با استفاده از نرم افزار STATA نسخه 14 در سطح معنی داری 5 درصد تحلیل شد. برای ارزشیابی مداخله های میدانی در تغییرات بروز سالک از روش رگرسیون سری های زمانی منقطع استفاده شد.
یافته هادر سال های 97-1380، در مجموع تعداد 43904 نفر به عنوان بیمار مبتلا به سالک در سامانه های ثبت بیماری سالک در واحد مبارزه با بیماری های مرکز بهداشت استان اصفهان به ثبت رسیده بودند. میانگین (±انحراف معیار) سن افراد مبتلا برابر99/23 (03/19±) بود. در تمامی شهرستان های تابعه و کل استان پس از انجام مداخله ها، میزان بروز موارد دارای روند کاهشی بود.
نتیجه گیریبرنامه های مداخله ای پیشگیرانه مرکز بهداشت استان تا حدودی موفق بوده و باعث کاهش روند رخداد بیماری در سال های پس از انجام مداخله شده است؛ به شکلی که باوجود عوامل مخدوشگر و تاثیرگذار متعدد در خصوص این بیماری و با توجه به میزان های بروز گزارش شده سالیانه، برنامه های مداخله ای پیشگیرانه منجر به کنترل بیماری و عدم رخداد آمارهای بالاتر شده است.
کلید واژگان: بروز، لیشمانیوز جلدی، انسان، رگرسیون، سری های زمانی منقطع، ایرانBackground and ObjectivesDue to the importance of cutaneous leishmaniasis, the national leishmaniasis project began in 2007 in Iran. The aim of the present study was to evaluate community interventions in changes in the incidence of cutaneous leishmaniasis in Isfahan Province from 2002 to 2018: an Interrupted time series regression analysis.
Materials and MethodsThe present study was a repeated cross-sectional study. The incidence and 95% confidence interval were used to describe the disease trend. Data were entered into the Excel and analyzed using STATA14 software at a significance level of 5%. Intermittent time series regression analysis was used to evaluate community interventions in changes of leishmaniasis incidence.
Resultsfrom 2002 to 2018, the data of 43,904 patients with leishmaniasis was registered in Isfahan Health Centers. The mean (standard deviation) age of the patients was 23.99 (19.03) years. The incidence had a decreasing trend after the interventions in all affiliated cities and the whole province.
ConclusionThe preventive intervention programs of the provincial health center have been rather successful and have reduced the incidence of the disease in the years after the intervention, so that despite the large number of confounding and influential factors regarding this disease, preventive intervention programs have led to disease control according to the reported annual incidence.
Keywords: Incidence, Cutaneous leishmaniasis, Human, Regression, Interrupted time series, Iran -
BackgroundWisdom is considered as a concept based on cognition, deep understanding and insight, reflective thinking and also a combination of considering individual interests in interaction with the interests of others. Therefore, the aim of this study was to investigate the role of academic experiences, critical thinking and cognitive flexibility in predicting the wisdom of Tehran University students.MethodsThis research was a correlational study. Herein, 275 female postgraduate students in 2020 were selected through multistage random cluster sampling. In order to collect data, the questionnaires of wisdom, academic experience, critical thinking and cognitive flexibility were employed. Data were analyzed using SPSS-23 software and hypotheses were tested through multiple regression.ResultsThe results showed that in academic experiences (P=0.002, β=0.13), critical thinking (P=0.001, β=0.19) and also in cognitive flexibility (P=0.001, β=0.57), the predictors were positive and significant. Also, wisdom and the predictor variables explained 51% of the variance in the criterion variable.ConclusionsAccording to the results of this study, academic experiences, critical thinking and cognitive flexibility play a role in increasing and fostering students’ wisdom, as a result of which students can make wise and realistic decisions in the process of solving real life problems.Keywords: Regression, Wisdom, Academic experiences, Critical thinking, Cognitive flexibility
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.