A Prioritization Model for Investing Plans by Hierarchical Decision Making under Uncertainty (Interval Comparison Matrices); a Case Study

Message:
Abstract:
According to the limit of resources in the subject of prioritization, one of the alternative methods is MCDM method. Generally, MCDM models have been developed under certainty while we confront with under uncertainty in real world. In hierarchical MCDM methods, one of the main steps is to weigh criteria and computes each alternative weight using defined criteria in the next steps. One of the easiest and most common weighting criteria methods is to apply the comparison matrices. The main approach in this paper is use of interval comparison matrices which is more realistic than classic methods. In this paper, two MCDM models are provided respectively lexicographic goal programming (LGP) and two-stage logarithmic goal programming methods (TLGP) and used to prioritize investment plans. Such models are hierarchical methods developed in under uncertainty. At the end of this paper, a numerical example solved for each method and the results are compared with analytical hierarchy process (AHP) under certainty.
Language:
Persian
Published:
Journal of Advances in Industrial Engineering, Volume:45 Issue: 2, 2012
Page:
229
magiran.com/p1049925  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!