As a result of the increasing popularity of social networking websites like Facebook and Twitter, analysis of the structure of these networks has received significant attention. The most important part of these analyses is towards detecting communities. The aforementioned structures are usually known with extremely high inter-connections versus few intra-connections in the graphs. In this paper, in spite of most approaches being optimization based, we have addressed the community detection problem (CDP) by a novel framework based on Information Diffusion Model and Shapley Value Concept. Here, each node of the underlying graph is attributed to a rational agent trying to maximize its Shapley Value in the form of information it receives. Nash equilibrium of the game corresponds to the community structure of the graph. Compared with the other methods, our approach demonstrates promising results on the well-known real world and synthetic graphs.
Iranian Journal of Science and Technology Transactions of Electrical Engineering, Volume:37 Issue: 1, 2013
51 to 65  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!