Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Author(s):
Message:
Abstract:

Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper‎, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncation model, and then prove some of its asymptotic behaviors, such as strong uniform consistency and asymptotic normality. ‎In particular‎, ‎we show that the proposed estimator has truncation-free variance‎. ‎Simulations are presented to illustrate the results and show how the estimator behaves for finite samples‎. Moreover, the proposed estimator is used to estimate the density function of a real data set.

Language:
English
Published:
Journal of Sciences, Islamic Republic of Iran, Volume:25 Issue: 1, Winter 2014
Pages:
57 to 67
https://www.magiran.com/p1277832  
سامانه نویسندگان
  • Sarmad، Majid
    Author (3)
    Sarmad, Majid
    Associate Professor Statistics, Ferdowsi University, مشهد, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)