Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncation model, and then prove some of its asymptotic behaviors, such as strong uniform consistency and asymptotic normality. In particular, we show that the proposed estimator has truncation-free variance. Simulations are presented to illustrate the results and show how the estimator behaves for finite samples. Moreover, the proposed estimator is used to estimate the density function of a real data set.
-
Association between Clinical Symptoms and Histological Features of Molars with Acute Pulpitis
Mahsa Dastpak, Jamileh Ghoddusi *, Amir Hossein Jafarian,
Iranian Endodontic Journal, Spring 2023 -
A bilateral fuzzy support vector machine hybridizing the Gaussian mixture model
M. Mohammadi *, M. Sarmad
Iranian journal of fuzzy systems, May-Jun 2021