Volcanic Red Bed Type Copper (-Silver) Mineralization in Keshtmahaki Deposit, Northwest of Safashahr, Southern Sanandaj-Sirjan Zone

Message:
Abstract:
Lower Cretaceous volcano-sedimentary sequence in the northwest and southeast of Safashahr (Dehbid) in marginal subzone of southern Sanandaj-Sirjan Zone comprises the Keshtmahaki deposit and few other occurrences of copper (-silver). The oldest rock units in the region are Jurassic shale and sandstone, which are unconformably overlain by the Lower Cretaceous progressive sequence with basal conglomerate, sandstone and silty shale. Copper (-Ag) mineralization occurred in the Lower Cretaceous pyroclastics and volcanic lava. The host rock is a crystal lithic tuff with trachyandesite-andesite affinity in which the stratabound and lenticular ore body is extended discontinuously over 35 km that laterally and vertically changed into orbitolina limestone. Ore minerals include chalcocite, bornite, native copper, digenite, chalcopyrite, pyrite, Ag-bearing clausthalite, covellite, anilite, malachite and azurite. Ore textures and structures are open space filling, vein-veinlet, replacement, disseminated and laminated-like. The lithogeochemical studies in 6 lithostratigraphic profiles from NW to SE of Safashahr indicated Cu (-Ag) mineralization occurrence in a specific stratigraphic unit and a positive relationship with Zn. The lithological, mineralogical, lithogeochemical and microscopic investigations revealed that mineralization initially occurred contemporaneously with volcanism in volcano-sedimentary sequences (absorption of Cu by ferric hydroxide, clay minerals and replacement in feldspar lattice) and then in burial diagenesis during dehydration of pyroclastic and detrital units and alteration resulting from this hydrothermal fluid, Cu released and transported by hydrothermal diagenesis fluids. When this ore-bearing hydrothermal fluid received by the rock unit with high permeability (pyrite-bearing crystal lithic tuff) and reduced conditions resulted from abundance of pyite, replaced them as copper sulphide minerals. S isotopic data of sulphidic minerals indicated that the bacterially sulfate reduction of sea water as an important role provided the nessecary sulfur for sulfide mineralization. Geochemical features of volcanic and pyroclastic units indicated that they formed in an intra-arc rift. On the basis of this study and with respect to some evidences such as tectonic setting, host rock, lenticular shape of the ore body, structure and texture as well as mineral paragenesis we suggest that Keshtmahaki Cu (-Ag) mineralization and surrounding occurrences are Volcanic Red Bed (VRB) type deposit that formed and concentrated contemporaneously with submarine volcanism to deep burial diagenesis processes.
Language:
Persian
Published:
Geosciences Scientific Quarterly Journal, Volume:24 Issue: 93, 2014
Page:
19
magiran.com/p1342442  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!