Predicting Successful Neurofeedback Training using EEG Signals of Primary Sessions

Neurofeedback has an important role in the improvement of cognitive performance in both clinical and healthy individuals. In a neurofeedback process, the person learns how to self-regulate their brain activity and tries to alter their mental state to achieve a desirable brainwave patterns. However, some individuals never learn how to modify their brain activities through neurofeedback training. In this study, we grouped participants as ‘‘performers’’ or ‘‘non-performers’’, based on their ability or inability to modify their brain activity. Then, with feature extraction from early training sessions and using a classifier, performers were classified from non-performers. The results showed that using multilayer perceptron neural network and with two features extracted from EEG signals of fourth neurofeedback session, with 94% accuracy on training data and 82.5% accuracy on test data, performers can be distinguished from non-performers.
Information Technology on Engineering Design, Volume:6 Issue: 1, 2013
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!