Evaluation of Organs at Risk's Dose in External Radiotherapy of Brain Tumors

Message:
Abstract:
Background
Radiotherapy plays an important role in the management of most malignant and many benign primary central nervous system (CNS) tumors. Radiotherapy affects both tumor cells and uninvolved normal cells; so, it is important to estimate absorbed dose to organs at risk in this kind of treatment. The aim of this study was to determine the absorbed dose to chiasma, lens, optic nerve, retina, parotid, thyroid and submandibular gland in frontal lobe brain tumors radiotherapy based on treatment planning system (TPS) calculation and direct measurement on the phantom.
Methods
A head and neck phantom was constructed using natural human bone and combination of paraffin wax and Sodium Chloride (NaCl) as tissue-equivalent material. Six cylinders were made of phantom material which had cavities to insert Thermoluminescent Dosimeters (TLDs) at several depths in order to measure absorbed dose to chiasma, lens, optic nerve, retina, parotid, thyroid and submandibular gland. Three routine conventional plans associated with tumors of this region and a new purposed technique were performed on the phantom and dose distribution and absorbed dose to critical organs were compared using treatment planning system (TPS) calculation and direct measurement on the phantom.
Results
Absorbed doses were measured with calibrated TLDs and are expressed in centigray (cGy). In all techniques absorbed dose to all organs except the lenses were at their tolerance dose levels and in the new purposed technique, absorbed dose to chiasma was significantly reduced.
Conclusion
Our findings showed differences in the range of 1-5% in all techniques between TPS calculation and direct measurements for all organs except submandibular glands and thyroid. Because submandibular glands and thyroid are far from primary radiation field, TLD reading in these regions although small but differs from TPS calculation which shows very smaller doses. This might be due to scattered radiation which is not well considered in the TPS. In the new technique, because the chiasma is out of the radiation field, absorbed dose was reduced significantly.
Language:
English
Published:
International Journal of Cancer Management, Volume:8 Issue: 1, Feb 2015
Pages:
47 to 52
magiran.com/p1367973  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!